
VANNAGES DU GRAND MORIN ETUDE HYDRAULIQUE ET ENVIRONNEMENTALE DU GRAND MORIN AVAL

PHASES 2-3 - ETAT DES LIEUX, DIAGNOSTIC

Commanditaire

SYNDICAT MIXTE D'ETUDES ET DE TRAVAUX POUR L'AMENAGEMENT ET L'ENTRETIEN DU BASSIN DU GRAND MORIN

Mairie de CRECY-LA-CHAPELLE 3, rue du Général Leclerc, 77580 - CRECY-LA-CHAPELLE

Bureau d'Etudes

SOCIETE D'ETUDES GENERALES D'INFRASTRUCTURES

SIEGE SOCIAL

7, Av. du Général de Gaulle
91 090 LISSES
Tél.: 01 60 79 05 00
info@segi-ingenierie.fr

2 impasse des Vignes 10 500 PERTHES-LES-BRIENNE

Tél.: 03 25 27 20 43 v.delorme@fluvialis.com

N° Affaire :	Date :	Indice :	Etabli par :
10-100	Janvier 2014	3	SEGI-Fluvial.IS

SOMMAIRE

I.	OBJET DE I	L'ETUDE	13
	I.1. CONTEXT	TE ET OBJECTIFS DE L'ETUDE	13
	I.2. PHASAGE	E DE L'ETUDE	14
II.	PRESENTA	TION GENERALE	15
	II.1. LOCALISA	ATION DE LA ZONE D'ETUDE	15
	II.2. RESEAU	HYDROGRAPHIQUE GENERAL	16
	II.3. GEOLOG	ilE	17
	II.4. HYDROG	EOLOGIE	18
		ntexte général	
	II.4.2. Pié	ézométrie	20
		Réseau piézométrique	
		Variations de niveau	
		ES HYDRAULIQUES CONCERNES	
Ш	. CONTEXTE	ADMINISTRATIF, JURIDIQUE ET REGLEMENTAIRE	24
	III.1. CONTEXT	TE ADMINISTRATIF	24
	III.1.1. Act	teurs impliqués	
	III.1.1.1.	Etat	
	III.1.1.2.	Agence de l'Eau Seine-Normandie	
	III.1.1.3.	DRIEE et DREAL	
	III.1.1.4.	Entente Marne	
	III.1.1.5.	Direction Départementale des Territoires de Seine-et-Marne	
	III.1.1.6.	Syndicat Mixte d'Etudes et de Travaux pour l'Aménagement e du Grand Morin	
	III.1.1.7.	Communes et regroupements de communes	
		emarche d'enquête	
		TE JURIDIQUE	
		idre réglementaire	
	III.2.1.1.	Directive Cadre Européenne sur l'eau	
	III.2.1.1.		
	III.2.1.2.	SDAGE	
	III.2.1.3.	SAGE	28
	III.2.1.4.	Autres	29
	III.2.2. Co	ntexte local	34
	III.2.2.1.	Domanialité	34
	III.2.2.2.	Droit d'eau	35
	III.2.2.3.	Règlement d'eau	38
	III.2.2.1.	Débit réservé	38
I۷	. MILIEU PHY	′SIQUE	39
	IV.1. PLUVION	1ETRIE	39
	IV.1.1. Do	nnées disponibles	39
	IV.1.2. Etu	ude des pluies	40
	IV.1.2.1.	Pluviométrie annuelle	40
	IV.1.2.2.	Pluviométrie mensuelle	40

IV.2.	. Hydi	ROLOGIE	.42
IV	′.2.1.	Données hydrologiques	.42
	IV.2.1.	1. Données disponibles	.42
	IV.2.1.	2. Synthèse des données	.42
IV	′.2.2.	Inondations	.46
	IV.2.2.	1. Gestion des ouvrages	.46
	IV.2.2.	2. Arrêtés	.49
	IV.2.2.	3. PPRI	.49
	IV.2.2.	4. Crues historiques	.50
	IV.2.2.	5. Cartographie des zones inondables	.50
IV	′.2.3.	Caractéristiques des bassins versants	.54
	IV.2.3.	1. Généralités	.54
	IV.2.3.	2. Caractéristiques géométriques des sous-bassins	.55
	IV.2.3.	3. Temps caractéristique	.57
IV	′.2.4.	Calcul des débits de pointe théoriques	.59
	IV.2.4. métho	1. Estimation des débits de période de retour 2, 5 et 10 ans par des Crupédix et Myer	
	IV.2.4. métho	2. Estimation des débits de période de retour 20, 50 et 100 ans par de du Gradex	
	IV.2.4.	3. Synthèse des débits de pointe obtenus	.64
IV	′.2.5.	Estimation des débits d'étiage	.64
IV	′.2.1.	Estimation des débits au module	.65
IV.3.	. Hydi	RAULIQUE	.65
IV	′.3.1.	Relevés de terrain	.65
	IV.3.1.	1. Relevés topographiques	.65
	IV.3.1.	2. Campagnes de mesures de débit	.66
	IV.3.1.	3. Sondes de mesure du niveau	.69
IV	′.3.2.	Diagnostic des ouvrages	.71
	IV.3.2.	1. Relevé des ouvrages hydrauliques	.71
	IV.3.2.	2. Etat des ouvrages	.71
	IV.3.2.	3. Niveaux réglementaires et modes de gestion	.72
IV	′.3.3.	Modèle hydraulique	.80
	IV.3.3.	1. Calage du modèle	.80
	IV.3.3.	2. Simulations en situation actuelle	.81
	IV.3.3.	3. Cartes de vitesse	.96
	IV.3.3.	4. Simulations de scénarios	.97
V. F	ONCTIO	ONNEMENT ECOLOGIQUE DE LA RIVIERE	111
V.1.	ASPE	CT QUALITATIF	111
V.	.1.1.	Cadre réglementaire	111
	V.1.1.	Direction Cadre européenne sur l'Eau	111
	V.1.1.2	·	
V.	.1.2.	Données disponibles	112
V.	.1.3.	Etat écologique des masses d'eau	113
	V.1.3.	Qualité biologique	113
	V.1.3.2	2. Qualité physico-chimique	120
	V.1.3.3	3. Conclusion sur l'état écologique	126

V.1.4. Etat cl	himique des masses d'eau	127
V.2. QUALITE DES	S MILIEUX	129
V.2.1. Protect	ction des patrimoines naturels	129
V.2.1.1. S	Sites classés et sites inscrits	129
V.2.1.2. N	Natura 2000	129
V.2.2. Faune	e – Flore	130
V.2.2.1.	Oonnées existantes	130
V.2.2.2.	Observations	133
V.2.3. Peuple	ement piscicole	136
V.2.3.1. Ir	ndice de Potentialité Piscicole (IPP)	136
V.2.3.2. E	spèces cibles	136
V.2.3.3. Z	Zones de frayères	137
V.2.3.4. C	Continuité	138
V.2.3.5.	Repeuplement	141
V.2.4. Lit mir	neur	141
V.2.4.1. F	aciès d'écoulement	141
V.2.4.2. F	ond du lit	142
V.2.4.3. V	/égétation aquatique	143
	Ripisylve	
V.2.5. Lit ma	ijeur	144
	tions d'ouverture des vannages	
	usion sur les milieux et les habitats	
	MORPHOLOGIE	
	risation du Grand Morin	
	s de l'étude	
	HYDROGEOMORPHOLOGIQUE DU GRAND MORIN	
	ionnement hydrogéomorphologique récent du Grand Morin	
	exture et structure des berges du Grand-Morin	
	Descriptions des profils sédimentaires (Prof. Dr. Jochen Kub	
Université de	Saarbrücken)	155
VI.2.1.3. C	Conclusion : des berges plutôt très cohérentes	164
VI.2.2. Cours	d'eau en déséquilibre morphodynamique	165
	tion de l'état de référence, les secteurs morphologique	
	ronçon BQP 1	
	ronçon BQP2	
	urs peu dynamiques, influencés par un ouvrage	
	ronçons peu dynamiques à faible potentiel morphodynamique	
	ronçons peu dynamiques à « fort » potentiel morphodynamique	
	au de synthèse	
	DROGEOMORPHOLOGIQUES DES OUVRAGES	
	ets actuel des ouvrages sur le profil en long	
	mpacts sur le profil en long général	
	mpacts sur le profil en long en amont des ouvrages	
VI.3.2. Impac	ts actuels des ouvrages sur le transport solide	178

VI.3.3. Impacts des ouvrages sur la dynamique latérale	182
VI.4. CONCLUSION DU DIAGNOSTIC HYDROGEOMORPHOLOGIQUE DU GRAND MORIN	185
VII. CONFLUENCE AVEC LA MARNE	186
VII.1. ETUDE HISTORIQUE ET GEOLOGIQUE	186
VII.1.1. Capture du Grand Morin par la Marne	186
VII.1.2. Les grands aménagements hydrauliques au niveau de la confluence	187
VII.1.3. Etude des cartes historiques	187
VII.1.4. Synthèse	188
VII.2. ETUDE MORPHODYNAMIQUE DE LA CONFLUENCE	188
VII.2.1. Bras gauche	188
VII.2.2. Bras droit	189
VII.2.3. Synthèse	193
VIII. MILIEU HUMAIN	194
VIII.1. POPULATION	194
VIII.2. ACTIVITES	195
VIII.2.1. Recensement des installations classées	195
VIII.2.2. Activité agricole	196
VIII.2.2.1. Tendance générale en Seine-et-Marne	196
VIII.2.2.2. Détail de la zone d'étude	198
VIII.3. USAGES DE L'EAU	199
VIII.3.1. Prélèvements	199
VIII.3.1.1. Alimentation en eau potable	199
VIII.3.1.2. Secteur industriel	
VIII.3.1.3. Agriculture	201
VIII.3.2. Assainissement	
VIII.3.2.1. Assainissement non collectif	202
VIII.3.2.2. Assainissement collectif	203
VIII.3.2.3. Réseau d'assainissement	205
VIII.3.3. Rejets	205
VIII.3.3.1. Rejets industriels	205
VIII.3.3.2. Rejets observés	206
VIII.4. PATRIMOINE BATI ET ARCHITECTURAL	207
VIII.4.1. Patrimoine lié à l'eau	
VIII.4.1.1. Histoire des Moulins	
VIII.4.1.2. Stabilité du patrimoine	209
VIII.4.1.3. Lavoirs, fontaines et puits	
VIII.4.2. Monuments historiques	210
VIII.5. TOURISME ET LOISIRS	211
VIII.5.1. Intérêt touristique	211
VIII.5.2. Cheminements et circuits touristiques	212
VIII.5.2.1. Circuits pédestres	
VIII.5.2.2. Circuits VTT	212
VIII.5.3. Loisirs	213
VIII.5.3.1. Canoë-kayak	
VIII.5.3.2. Pêche	216

	VIII.5.3.3.	Golf	217
	VIII.5.3.4.	Perspectives	217
IX.	CONCLUSIO	ON	218
Χ.	ANNEXES		220

FIGURES

Figure 1 : Situation de la zone d'étude	15
Figure 2 : Réseau hydrographique sur la zone d'étude	16
Figure 3 : Coupe géologique du Bassin Parisien (source : BURGEAP, 2008)	17
Figure 4 : Coupe géologique longitudinale du Grand Morin (source ; Flipo, 2005)	17
Figure 5 : Carte géologique du territoire (source : InfoTerre)	
Figure 6 : Formations géologiques et principaux aquifères en Seine-et-Marne (source : DIREN IDF)) 19
Figure 7 : Variations du niveau piézométrique sur les nappes du tertiaire de 2009 à 2010 à Jouy- Morin (source : ADES)	-sur-
Figure 8 : Localisation des ouvrages hydrauliques du Grand Morin	
Figure 9 : Carte des Masses d'Eau Grand et Petit Morin (Source : AESN)	
Figure 10 : Cartographie des inventaires frayères (1/2)	
Figure 11 : Cartographie des inventaires frayères (2/2)	
Figure 12 : Localisation de la station pluviométrique	39
Figure 13 : Evolution des précipitations annuelles pour la station pluviométrique de Crécy-la-Chap depuis 1972	oelle
Figure 14 : Quantile expérimentaux de distribution des pluies mensuelles à Crécy-la-Chapelle (19 2010)	972-
Figure 15 : Localisation des stations hydrométriques sur la zone d'étude	42
Figure 16 : Evolution des débits moyens journaliers du Grand Morin à Pommeuse	44
Figure 17 : Débits moyens journaliers du Grand Morin à Pommeuse	45
Figure 18 : Localisation des ouvrages de la Fausse Rivière	46
Figure 19 : Localisation des ouvrages de Crécy-la-Chapelle	47
Figure 20 : Extrait 1 de l'Atlas des zones inondables du Grand Morin (source : IAU Île-de-France)	
Figure 21 : Extrait 2 de l'Atlas des zones inondables du Grand Morin (source : IAU Île-de-France)	52
Figure 22 : Extrait 3 de l'Atlas des zones inondables du Grand Morin (source : IAU Île-de-France)	53
Figure 23 : Bassin versant type	54
Figure 24 : Bassin versant topographique et bassin versant hydrogéologique	55
Figure 25 : Situation d'un bassin versant résiduel	55
Figure 26 : Localisation des sous-bassins versants du Grand Morin	56
Figure 27 : Relation entre la forme du BV et les débits de pointes en crue	58
Figure 28 : Couverture de sol Corine Land Cover 2006 des BV du Grand Morin	60
Figure 29 : Exemple de profils en travers sur le Grand Morin, extrait du plan autocad	
Figure 30 : Campagne de débit à l'étiage (2 septembre 2010)	
Figure 31 : Campagne de débit en hautes eaux (10 janvier 2011)	
Figure 32 : Mesures en continu des niveaux du Grand Morin aux moulins de Coubertin et Trochard	
Figure 33 : Mesures en continu des niveaux du Grand Morin à Guérard et Crécy-la-Chapelle	
Figure 34 : Profil en long de l'Usine de Boissy-le-Châtel - ouvrages ouverts et fermés	
Figure 35 : Courbe de remous du l'Usine de Boissy-le-Châtel à l'étiage	
Figure 36 : Profil en long du Moulin des Prés - ouvrages ouverts et fermés	
Figure 37 : Courbe de remous du Moulin des Prés à l'étiage	
Figure 38: Profil en long clapet de Mouroux - ouvrages ouverts et fermés	
Figure 39 : Courbe de remous du clapet de Mouroux à l'étiage	
Figure 40: Profil en long du bief de Prémol - ouvrages ouverts et fermés	
Figure 41: Courbe de remous du Moulin de Prémol à l'étiage	
Figure 42 : Profil en long du moulin de Tigeaux - ouvrages ouverts et fermés	
Figure 43: Courbe de remous du moulin de Tigeaux à l'étiage	
Figure 44: Profil en long du barrage du Faubourg - ouvrages ouverts (vanne v1) et fermés	
Figure 45: Courbe de remous du barrage du Faubourg à l'étiage	

Figure 46: Profil en long du moulin Brûlé - ouvrages ouverts et fermés	. 94
Figure 47: Corube de remous du moulin Brûlé à l'étiage	. 94
Figure 48: Profil en long du moulin de Quintejoie - ouvrages ouverts et fermés	. 95
Figure 49: Courbe de remous du moulin de Quintejoie à l'étiage	. 95
Figure 50 : Profil en long en amont de l'usine de Boissy-le-Châtel avec ouverture des ouvrages arasement des ouvrages	
Figure 51: Répartition des débits à Sainte-Anne en étiage – situation actuelle	100
Figure 52: Répartition des débits à Sainte-Anne en étiage – avec arasement du déversoir	
Figure 53: Répartition des débits à Sainte-Anne au module – situation actuelle	100
Figure 54: Répartition des débits à Sainte-Anne au module – avec arasement du déversoir	100
Figure 55 : Profil en long du bief de Prémol en situation actuelle et avec arasement des ouvrage l'étiage	
Figure 56: Profil en long en amont de Tigeaux avec ouverture des ouvrages et arasement ouvrages	
Figure 57: Profil en long du bief de Serbonne à l'étiage en situation actuelle, avec vanne ouverte avec arasement du déversoir	
Figure 58 : Profil en long du bief de la Chapelle à l'étiage	106
Figure 59: Profil en long du bief de la Chapelle à la crue 2 ans	106
Figure 60 : Profil en long du bief du Moulin Guillaume à l'étiage	108
Figure 61: Profil en long du bief de la Porte à Bateaux – étiage	110
Figure 62 : Profil en long du bief de la Porte à Bateaux – Crue 2 ans	110
Figure 63 : Répartition des taxons selon leur ordre et leur régime alimentaire sur la station de Sa Rémy-la-Vanne	
Figure 64 : Répartition des taxons selon leur ordre et leur régime alimentaire sur la station Pommeuse	
Figure 65 : Répartition des taxons selon leur ordre et leur régime alimentaire sur la station de Tige	aux 116
Figure 66 : Réservoirs biologiques dans la vallée du Grand Morin (source : IAU Île-de-France)	132
Figure 67 : Espèces invasives observées sur la zone d'étude	
Figure 68 : Espèces patrimoniales observées sur la zone d'étude	135
Figure 69 : Franchissabilité des ouvrages hydrauliques sur le Grand Morin aval	138
Figure 70 : Végétation aquatique observée sur la zone d'étude	143
Figure 71 : Répartition de l'occupation des sols (CLC)	144
Figure 72 : Localisation des zones humides sur le territoire (source : SAGE)	146
Figure 73 : Diversification des faciès pendant les ouvertures	148
Figure 74 : Augmentation des hauteurs de berges	
Figure 75 : Déconnexion des brassets de Coulommiers et de Crécy-la-Chapelle	149
Figure 76 : Recalibrage du Grand Morin	151
Figure 77 : Carte de localisation des tronçons hydrogéomorphologiques	152
Figure 78 : Cartes des zones de prélèvements	155
Figure 79 : Tronçon à caractère préservé	167
Figure 80 : Tronçon dynamique	169
Figure 81 : Tronçon à faible potentiel morphodynamique	170
Figure 82 : Conséquences morphodynamiques des ouvrages et des aménagements de berges	171
Figure 83 : Tronçon à « fort » potentiel morphodynamique	171
Figure 84 : Profil en long du Grand Morin avec repérage des ouvrages	177
Figure 85 : Situation en crue d'un barrage non comblé par les sédiments par l'amont	179
Figure 86 : Situation en crue d'un barrage comblé par les sédiments par l'amont	179
Figure 87 : Schématisation de l'influence d'un seuil sur les différentes formes du transport solide	180
Figure 88 : Evolution historique du tracé du Grand Morin	184

Figure	89 : Evolution hydrogéomorphologique du Grand-Morin	185
Figure	90 : Capture du Grand Morin par la Marne	186
Figure	91 : Archives historiques au niveau de la confluence	188
Figure	92 : Confluence du bras gauche, un secteur dynamique	189
Figure	93 : Confluence du bras droit, un secteur très aménagé	191
Figure	94 : Aménagement de la confluence	192
Figure	95 : Population et densité de population sur le territoire en 2009 (source : SAGE)	195
Figure	96 : Activités dominantes des exploitations de Seine-et-Marne (source : Agreste 2011)	197
Figure	97 : Activités dominantes des communes de Seine-et-Marne (source : Agreste 2011)	197
Figure	98 : Surface agricole utile du territoire (source : SAGE)	198
Figure	99 : Carte des Captages eau potable sur la zone d'étude (source : DDASS)	199
Figure	100 : Prélèvements industriels en eaux superficielles de 1995 à 2007	201
Figure	101 : Prélèvements industriels en eaux souterraines de 1995 à 2007	201
Figure	102 : Part de l'assainissement collectif et non collectif par commune en 2008 (source : SA	GE) 203
Figure	103 : Etat des réseaux d'assainissement en Seine-et-Marne	205
Figure	104 : Tourisme sur la zone d'étude	211
Figure	105 : Circuit VTT « La vallée du Grand Morin »	212
Figure	106 : Circuit VTT « Autour de Crécy »	213

TABLEAUX

Tableau 1 : C	Caractéristiques du piézomètre de Jouy-sur-Morin (source : ADES)	20
	Duvrages hydrauliques présents sur la zone d'étude	
	Statut des ouvrages quant au classement du Grand Morin	
	Date des arrêtés de réglementation des ouvrages du Grand Morin aval (source : Ba	
,		
Tableau 5 : E ans	Basses eaux à Meilleray (loi de Galton - janvier à décembre) - Données calculées sur	
Tableau 6 : C	Crues à Meilleray (loi de Gumbel - septembre à août) - Données calculées sur 13 ans	43
Tableau 7 : M	Maximums connus à Meilleray	43
Tableau 8 : E	coulements mensuels à Meilleray (naturels) - Données calculées sur 16 ans	43
	Basses eaux à Pommeuse (loi de Galton - janvier à décembre) - Données calculées	
	Crues à Pommeuse (loi de Gumbel - septembre à août) - Données calculées sur 42 a	
Tableau 11 :	Maximums connus à Pommeuse	
Tableau 12 :	Ecoulements mensuels à Pommeuse (naturels) - Données calculées sur 43 ans	44
Tableau 13 :	Niveau d'alerte sur la balise de Mouroux	48
Tableau 14 :	Recensement des principaux arrêtés de catastrophe naturelle « Inondation »	49
Tableau 15 :	Caractéristiques des sous bassins versants du Grand Morin	57
Tableau 16 :	Temps de concentration des sous bassins versants du Grand Morin	58
Tableau 17 :	Comparaison des caractéristiques des bassins versants du Grand Morin	59
Tableau 18:	Débits biennal et quinquennal instantanés calculés pour les bassins versants du Gra	and
Tableau 19 :	Débits décennaux instantanés calculés pour le bassin versant total du Grand Morin	62
Tableau 20 :	Calcul du coefficient de pointe de la station hydrométrique de Pommeuse	63
Tableau 21 :	Application de la méthode du Gradex sur le BV du Grand Morin	63
	Evaluation des débits de pointe caractéristiques de périodes de retour 10, 20, 50 et 1	
	Débits d'étiage de la station hydrométrique de Meilleray	
	Débits d'étiage de la station hydrométrique de Pommeuse	
	Modules sur le bassin versant du Grand Morin	
	Exemple de notation sur un ouvrage	
	Evaluation de l'état des ouvrages hydrauliques	
	Présentation synthétique des ouvrages hydrauliques	
	Débits et cote de la Marne dans les simulations	
	Ouvrages ouverts en crue dans le modèle	
	Capacité des ouvrages à la cote de régulation	
	Cotes et chutes au niveau des moulins	
	Courbes de remous	
	Cotes en amont de l'usine de Boissy-le-Châtel avec ouverture des 5 vannes	
	Cotes en amont de l'usine de Boissy-le-Châtel avec arasement des ouvrages	
	Cotes en amont du déversoir du moulin de Saint-Anne avec arasement des ouvrages.	
	Cotes sur le bief de Prémol en situation actuelle, et avec arasement du déversoir 1	
	Cotes sur le bief de Tigeaux en situation actuelle, ouvrages ouverts et avec arasement	
du déve	ersoir1	02
	Simulation des cotes en amont de Serbonne	
	Simulation des cotes en amont de la Chapelle	
	Simulation des cotes sur le bief du moulin Guillaume	
Tableau 42:	Simulation des cotes sur le bief de la Porte à Bateaux1	09

Tableau 43 : Synthèse des objectifs fixés par le SDAGE	112
Tableau 44 : Stations des réseaux d'observation sur la zone d'étude (source : DRIEE)	113
Tableau 45 : Classes d'état des différents indices biologiques	
Tableau 46 : IBGN du 10 août 2010 à Saint-Rémy-la-Vanne (source : données DRIEE puis trait	
Tableau 47 : IBGN du 20 septembre 2010 à Pommeuse (source : données DRIEE puis traitées)	115
Tableau 48 : IBGN du 3 septembre 2010 à Tigeaux (source : données DRIEE puis traitées)	116
Tableau 49 : IBGN de 2005 à 2010 sur les masses d'eau étudiées (source : DRIEE)	117
Tableau 50 : IBD de 2005 à 2010 sur les masses d'eau étudiées (source : DRIEE)	117
Tableau 51 : Espèces capturées sur la station de Pommeuse depuis 2007 (source : ONEMA)	118
Tableau 52 : IPR depuis 2005 sur la zone d'étude (sources : DRIEE et ONEMA)	119
Tableau 53 : Synthèse de la qualité biologique des masses d'eau de la zone d'étude	
Tableau 54 : Classes d'état des différents indices physico-chimques	
Tableau 55 : Qualité physico-chimique du Grand Morin sur la zone d'étude vis-à-vis du bilan oxyg	121
Tableau 56 : Qualité physico-chimique du Grand Morin sur la zone d'étude vis-à-vis du l nutriments	
Tableau 57 : Qualité physico-chimique du Grand Morin sur la zone d'étude vis-à-vis de l'acidifica et de la température	ation 123
Tableau 58 : Qualité physico-chimique du Grand Morin sur la zone d'étude vis-à-vis des pollu spécifiques	
Tableau 59 : Qualité physico-chimique du Grand Morin sur la zone d'étude	125
Tableau 60 : Synthèse de l'état écologique des masses d'eau de la zone d'étude	126
Tableau 61 : Etat chimique du Grand Morin sur la zone d'étude en 2009	127
Tableau 62 : Evolution de l'état chimique du Grand Morin sur la zone d'étude depuis 2007	128
Tableau 63 : Sites classés et sites inscrits situés sur la zone d'étude (source : CARMEN)	129
Tableau 64 : Sites Nature 2000 à proximité de la zone d'étude (source : CARMEN)	130
Tableau 65 : ENS situés sur la zone d'étude (Source : SAGE des deux Morins)	
Tableau 66 : Faune observée durant la campagne de terrain de 2011	133
Tableau 67: Espèces végétales présentes majoritairement sur les tronçons	134
Tableau 68 : Caractéristique des espèces cibles pour l'étude du peuplement piscicole	137
Tableau 69 : Franchissabilité (montaison/dévalaison) par ouvrage pour le chabot	139
Tableau 70 : Franchissabilité (montaison/dévalaison) par ouvrage pour les anguilles	140
Tableau 71 : Bilan des espèces introduites en 2009 et 2010 par l'APPMA de Crécy :	
Tableau 72 : Faciès d'écoulement d'après Malavoi	141
Tableau 73 : Faciès d'écoulement du lit mineur	142
Tableau 74 : Granulométrie du lit mineur	142
Tableau 75 : Colmatage du lit mineur	143
Tableau 76 : Caractéristiques de la ripisylve présente sur les berges du Grand Morin	144
Tableau 77 : Caractéristiques hydrogéomorphologiques du Grand Morin	173
Tableau 78 : Calcul du taux d'étagement sur le Grand Morin	178
Tableau 79 : Etat du transit sédimentaire par ouvrage	181
Tableau 80 : Evolution de la population de la zone d'étude entre 1990 et 2008 (source : INSEE)	194
Tableau 81 : Recensement des ICPE sur la zone d'étude	
Tableau 82 : Répartition de l'assolement en 2000 sur la zone d'étude (source : Agreste)	198
Tableau 83 : Liste des captages eau potable sur la zone d'études (source : SAGE)	
Tableau 84 : Prélèvements AEP sur le territoire de 1995 à 2007 (source : SAGE)	200
Tableau 85 : Prélèvements industriels sur la zone d'étude de 1995 à 2007 (source : SAGE)	
Tableau 86 : Prélèvements liés à l'agriculture sur la zone d'étude de 1995 à 2007 (source : SAGE)	
Tableau 87 : Caractéristiques des stations d'épuration (source : SAGE)	204

Tableau 88 : Définition de l'état des réseaux d'assainissement	205
Tableau 89 : Rendement épuratoire des effluents industriels avant rejet dans le milieu nat réseau communal par bassin versant en 2005 (source : AESN)	
Tableau 90 : Histoire de l'établissement des moulins	207
Tableau 91 : Histoire des différents moulins de l'aval du Grand Morin (source : Bazin 1901)	208
Tableau 92 : Monuments historiques sur la zone d'étude	210
Tableau 93 : Etat des lieux de la navigation sur le Grand Morin aval (source : Expertise t CDCK77)	
Tableau 94 : Caractéristiques des AAPPMA sur la zone d'étude	216

I. OBJET DE L'ETUDE

I.1. CONTEXTE ET OBJECTIFS DE L'ETUDE

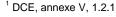
Situé à l'Est de Paris, le Grand Morin prend sa source sur la commune de Lachy et parcourt 119 km jusqu'à son exutoire dans la Marne. Il draine un bassin versant de superficie égale à 1185 km² à la confluence. Sur tout son linéaire, des ouvrages comportant des vannages sont présents. Utilisés autrefois à des fins économiques (minoterie, usine, etc.), ils font aujourd'hui partie du domaine privé (particulier ou entreprise) ou public (commune) et ont généralement perdu leur usage premier.

Ces ouvrages transversaux génèrent des impacts non négligeables sur la dynamique des rivières et les êtres vivants s'y trouvant. Sur le cours du Grand Morin, dans les limites du territoire de compétence du **Syndicat Mixte d'Etudes et de Travaux pour l'Aménagement et l'Entretien du Bassin du Grand Morin**, pas moins d'une trentaine d'obstacles à l'écoulement sont dénombrés.

Or, le Syndicat et les partenaires financiers et techniques (AESN, Entente Marne, Région IIe de France, Conseil Général de la Seine et Marne) souhaitent disposer d'un schéma directeur opérationnel de restauration du Grand Morin et de gestion des ouvrages.

Aussi pour **satisfaire aux exigences de la Directive Cadre sur l'Eau** (D.C.E.: Directive 2000/60/CE du 23/10/2000), il est aujourd'hui nécessaire de mener une étude préalable permettant de connaître le contexte hydromorphologique, hydraulique, écologique et sociologique du linéaire de cours d'eau concerné.

En effet, la DCE considère la présence de seuils sur un cours d'eau comme un obstacle à sa continuité écologique. Cette notion renvoie à l'idée d'une libre circulation, longitudinale et transversale, des éléments de la rivière (eau, êtres vivants, sédiments) non entravée par des obstacles. Cet élément est placé comme une condition hydromorphologique participant au « bon état écologique ». Le « très bon état » de la qualité hydromorphologique sur l'élément « continuité de la rivière » est défini comme suit : « La continuité de la rivière n'est pas perturbée par des activités anthropogéniques et permet une migration non perturbée des organismes aquatiques et le transport de sédiments »¹.


On peut distinguer 3 types de dysfonctionnements induits par ces obstacles :

- rupture de la continuité écologique et du transit sédimenaire ;
- effet de « retenue » (lissage des écoulements et homogénéisation des habitats aquatiques à l'amont des ouvrages) ;
- effet « point dur » (réduction des processus d'érosion).

Cependant, ils peuvent potentiellement, dans la configuration actuelle, induire des effets sur d'autres compartiments socio-environnementaux. Ce document étudiera notamment les effets des ouvrages sur les éléments suivants :

- participation de l'ouvrage au ralentissement de l'onde de crue ;
- alimentation en eau des annexes hydrauliques et frayères ;
- évolution du fond du lit (stabilisation, érosion, etc.);
- incidence sur le niveau de la nappe alluviale.

C'est dans ce contexte que le Syndicat engage cette étude, dans le souci de prémunir les biens et les personnes, d'améliorer ou de préserver les écosystèmes aquatiques et de préserver le patrimoine dans le respect des documents cadres réglementaires et d'orientation.

I.2. Phasage de l'etude

Comme proposé par le cahier des charges, l'étude est décomposée en trois phases :

√ Phase 1- Recueil de données

Cette phase consiste en un recueil des données existantes sur le bassin versant du Grand Morin et en une reconnaissance approfondies de terrains.

Cette phase 1 s'accompagne d'une tranche conditionnelle visant à acquérir des données complémentaires utiles à la réalisation du diagnostic.

√ Phase 2 - Etat des lieux, diagnostic

Il s'agit de réaliser un état des lieux complet du cours d'eau : étude morphodynamique et écologique, étude des usages, etc..

Lors de cette phase, la mise en œuvre d'un modèle hydraulique et numérique et son analyse seront réalisées.

√ Phase 3 – Conditions d'écoulement du Grand Morin dans la Marne

Un intérêt particulier sera porté aux conditions d'écoulement du Grand Morin dans la Marne et notamment aux phénomènes d'envasement sur ce secteur.

✓ Phase 4 - Proposition de scenarii

Cette phase comprend la définition de scenarii envisageables aux points de vue réglementaire, écologique, financier et technique, avec une étape de modélisation hydraulique, puis une analyse comparative de ces scenarii.

Le présent document constitue le rapport de Phase 2 et Phase 3 de l'étude.

II. PRESENTATION GENERALE

II.1. LOCALISATION DE LA ZONE D'ETUDE

La zone d'étude est située sur le territoire du **Syndicat Mixte d'Etudes et de Travaux pour l'Aménagement et l'Entretien du Bassin du Grand Morin**, plus précisément entre Chauffry et Esbly et concerne la rivière Grand Morin, affluent rive gauche de la Marne. Dix-sept communes sont ainsi concernées, d'amont en aval :

- Boissy-le-Châtel;
- Chailly-en-Brie;
- Coulommiers;
- Mouroux :
- Pommeuse;
- La Celle-sur-Morin ;
- Guérard :
- Dammartin-sur-Tigeaux;
- Tigeaux;

- Crécy-la-Chapelle;
- Voulangis;
- Villiers-sur-Morin;
- Couilly Pont-aux-Dames;
- Saint-Germain-sur-Morin;
- Montry;
- Esbly;
- Condé-Sainte-Libiaire.

Figure 1 : Situation de la zone d'étude

Les limites amont et aval du linéaire du cours d'eau sont les suivantes :

- limite amont : Pont enjambant le Grand Morin à Chauffry ;
- limite aval : confluence avec la marne.

Enfin, le périmètre de l'étude concerne le lit majeur du Grand Morin. L'ensemble des ouvrages présents sur le linéaire de cours d'eau ainsi que leurs zones d'influence amont, aval et latérale sera donc étudié.

II.2. RESEAU HYDROGRAPHIQUE GENERAL

Le Grand Morin prend sa source à 190 m d'altitude et conflue avec la Marne à une cote de 43 m après un parcours de 119 km, soit une pente de 1,2 %

Le relief du territoire est typique de la région briarde avec des plateaux agricoles et localement forestiers en tête de bassin versant et des vallées marquées au sein desquelles s'écoulent les cours d'eaux principaux. La différence d'altitude entre les plateaux et les cours d'eau évolue de 70 à 100 m. De ce fait, on observe une vallée étroite et profonde avec des coteaux parfois abrupts.

Le Grand Morin, sur le secteur d'étude est d'orientation générale sud-est / nord-ouest. Le linéaire total du cours d'eau depuis Chauffry jusqu'à la Marne est d'environ 50 km pour une pente de 0,6 ‰.

Sur le linéaire d'étude, deux principaux affluents viennent nourrir le Grand Morin : l'Orgeval qui vient se jeter en rive droite à l'amont de Coulommiers et l'Aubetin, qui vient se jeter en rive gauche à Pommeuse. Les parties terminales de ces deux affluents ont été prises en compte dans l'étude.

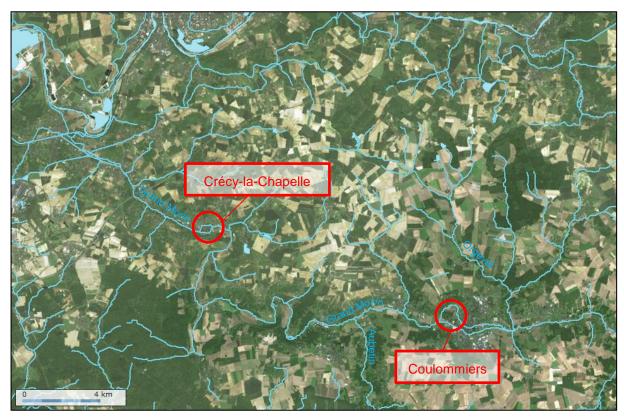


Figure 2 : Réseau hydrographique sur la zone d'étude

Le volet hydrologique détaille les caractéristiques de chaque sous bassin versant concernant la zone d'étude.

II.3. GEOLOGIE

Le bassin versant du Grand Morin s'inscrit dans des formations tertiaires situées à l'est du bassin parisien.

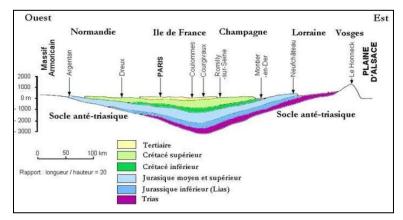


Figure 3 : Coupe géologique du Bassin Parisien (source : BURGEAP, 2008)

Les formations tertiaires se divisent en deux catégories : l'Oligocène (couche supérieure) et l'Eocène (couche inférieure).

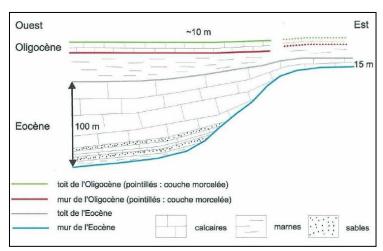


Figure 4 : Coupe géologique longitudinale du Grand Morin (source ; Flipo, 2005)

L'Oligocène est représenté par les sables de Fontainebleau (Stampien supérieur), les calcaires et les meulières de Brie (Stampien inférieur) et les argiles et marnes vertes (Stampien inférieur). Les sables de Fontainebleau ne s'observent que sur quelques buttes témoins qui coiffent les collines. Les meulières de Brie constituent la plate-forme structurale du plateau.

L'Eocène est divisé en trois formations, dont deux observables sur la zone d'étude :

- Eocène supérieur, comprenant des marnes supragypseuses (jusqu'à 16m d'épaisseur), des calcaires de Champigny (épaisseur supérieure à 20m au centre du bassin), des marnes infragypseuses du Ludien, du Calcaire de St Ouen (10 à 20m d'épaisseur) et des sables de Beauchamp (épaisseur de l'ordre de 20m seulement à l'ouest du bassin), rattachés respectivement au Bartonien supérieur et inférieur.
- **Eocène moyen**, représenté par les marnes, caillasses et le calcaire grossier du Lutétien. Les affleurements sont rares et seulement présents lorsque les cours d'eau ont fortement entaillé les terrains qui les recouvrent.

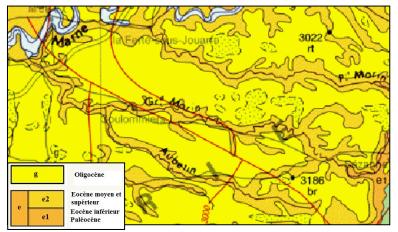


Figure 5 : Carte géologique du territoire (source : InfoTerre)

Pour ce qui est des formations superficielles, le plateau de Brie est une surface d'érosion portant une formation superficielle spécifique d'argiles de décalcification et d'accidents siliceux (argile à meulière de Brie). Ce complexe d'altération, essentiellement argileux, est présent de manière discontinu sur l'ensemble du plateau tertiaire.

Les plateaux sont plus ou moins recouverts de limons loessiques dont l'épaisseur (jusqu'à 10m) décroit du nord-ouest au sud-est du bassin du Grand Morin. Le sommet de la formation est relativement homogène, constitué de limons loessiques, tandis que la partie inférieure est enrichie en argile et en sables.

Enfin, les bords de vallées sont tapissés par deux grands types de couches alluviales de 5 à 10 m d'épaisseur :

- des alluvions fines argilo-limoneuses à sableuses mises en place durant l'Holocène ;
- des alluvions grossières à la base déposées durant la dernière période froide (Wechsélien).

II.4. HYDROGEOLOGIE

II.4.1. Contexte général

Le système hydrogéologique sur le Grand Morin est relativement complexe et découle directement de la diversité des formations géologiques.

Au niveau du territoire d'études, on distingue les nappes alluviales, la nappe de l'Albien et les nappes du tertiaire. Ces dernières incluent la nappe des calcaires de Brie, la nappe des calcaires de Champigny et la nappe du Lutétien-Yprésien.

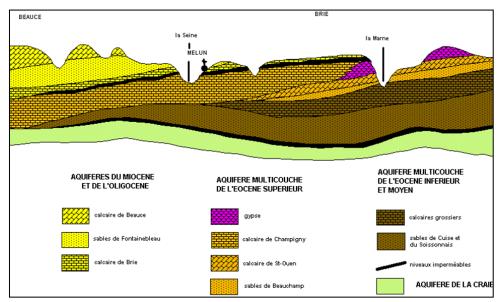


Figure 6 : Formations géologiques et principaux aquifères en Seine-et-Marne (source : DIREN IDF)

Nappes alluviales

Situées dans les vallées, ces nappes sont de faible épaisseur mais s'étendent sur plusieurs kilomètres de large. Elles constituent des aquifères capables d'emmagasiner de grandes quantités d'eau. Ces nappes ne sont actuellement pas exploitées pour l'alimentation en eau potable.

Nappe de l'Albien

Cette nappe a une surface équivalente à 100 000 m² et atteint son niveau le plus bas aux alentours de Coulommiers. Elle est totalement sous couverture au niveau de la zone d'étude, donc bien protégée des pollutions. Son alimentation est assurée essentiellement par drainance des nappes voisines. Sa recharge est faible (0,003 % de son volume par an) ce qui la rend très sensible aux prélèvements. Les caractéristiques de cette nappe en font une ressource majeure pour l'alimentation de secours en eau potable. A cette fin, le nombre de forages et leur exploitation sont très réglementés.

Nappe des Calcaires de Brie

Cette nappe peu profonde n'est pratiquement plus exploitée étant donné sa faible capacité et son degré de pollution depuis 1960. Elle contribue cependant à l'alimentation des nappes inférieures (nappe des calcaires de Champigny et nappe du Lutétien/Yprésien), soit par drainance au travers des argiles vertes, soit par alimentation des petits cours d'eau (source : SAGE).

Nappe des calcaires de Champigny/ Aquifère multicouche de l'Eocène supérieur

L'aquifère de l'Eocène supérieur est une des nappes les plus exploitées d'Ile-de-France et est particulièrement pollué. Le réservoir de la nappe du Champigny est de type calcaire dominant, fissuré, avec de nombreux phénomènes karstiques. La couche imperméable de marnes supra gypseuses et de marnes vertes qui l'isole sur les plateaux, disparaît dans les vallées et sur certains coteaux, lui conférant ainsi une certaine vulnérabilité.

Nappe du Lutétien-Yprésien /Aquifère multicouche de l'Eocène inférieur moyen

L'aquifère multicouche s'étend très largement au nord de la Seine et de la Marne. Il comprend plusieurs entités aquifères, séparées par des intercalations semi-perméables : des Sables de Bracheux, les Sables du Soissonais, les Sables de Cuise et les Calcaires grossiers. A l'exception des régions encore influencées par les exploitations, la surface piézométrique suit la surface topographique et elle est drainée par les rivières. (source : DIREN IDF).

II.4.2. Piézométrie

II.4.2.1. Réseau piézométrique

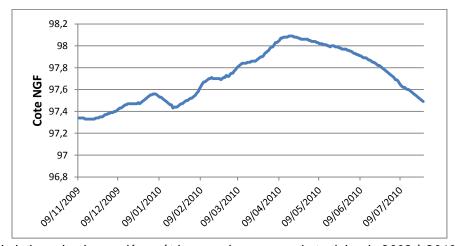
Il n'existe pas de piézomètre sur les communes de notre zone d'étude. En revanche, on compte 6 piézomètres sur les bassins versants du Petit-Morin et du Grand Morin, pour les mesures de profondeur de la nappe du tertiaire. Ces piézomètres appartiennent au réseau de suivi quantitatif des eaux souterraines du Conseil Général 77 (géré par AQUI'Brie) ou du MEEDDM (géré par le BRGM).

Le piézomètre le plus proche de notre zone est le piézomètre de Jouy-sur-Morin, mis en service en 2009. Ses caractéristiques sont détaillées ci-dessous :

Tableau 1 : Caractéristiques du piézomètre de Jouy-sur-Morin (source : ADES)

Coordonnées BSS	Commune	Coordonnées XY	Altitude (m)	Profondeur (m)	Date de mise en service	Nappe concernée
01865X0018/P	Jouy-Sur- Morin	668857, 2422324	118	22	02/11/2009	Tertiaire - Champigny - en Brie et Soissonnais

Pour ce qui est de la nappe de la Craie, il n'existe qu'un piézomètre, celui de Morains, géré par le MEEDDM.


II.4.2.2. Variations de niveau

a. Variations annuelles

Les niveaux des nappes varient tout au long de l'année, avec :

- une recharge par les eaux pluviales aboutissant à une augmentation du niveau piézométrique de novembre à avril ;
- une période de vidange à partir du mois d'avril entraînant une diminution du niveau piézométrique.

L'évolution piézométrique de la nappe du tertiaire observée au niveau du piézomètre de Jouy-sur-Morin est un bon exemple de ces phénomènes.

<u>Figure 7 : Variations du niveau piézométrique sur les nappes du tertiaire de 2009 à 2010 à Jouy-sur-Morin (source : ADES)</u>

b. Variations interannuelles

De 1998 à 2001, une remontée progressive du niveau de la nappe du tertiaire a été observée au fil des ans. Puis, de 2001 à 2006, les piézomètres ont clairement mis en évidence un abaissement du niveau de la nappe, et ce malgré les épisodes de remontée hivernale. Depuis 2006, on observe une légère remontée de la nappe du tertiaire. (source : SAGE).

II.5. OUVRAGES HYDRAULIQUES CONCERNES

Les moulins ou ensembles d'ouvrages hydrauliques concernés par l'étude sont présentés dans les figures suivantes. Les moulins effacés ou en partie démantelés sont indiqués car il reste systématiquement des parties d'anciens ouvrages dans le lit mineur. Constituant toujours des entraves à la continuité écologique et donc des freins à l'atteinte du bon état, ceux-ci ont été analysés au même titre que les sites en état de fonctionnement.

Les parcelles sur lesquelles sont construits l'ensemble des ouvrages, ainsi que leurs propriétaires ont également été renseignées.

A noter que des ouvrages annexes sur les brassets de la zone d'étude ont aussi été intégrés :

- vannages des Religieuses et des Tanneurs, un clapet et 2 déversoirs (Coulommiers);
- 3 vannes et 1 déversoir (Crécy-la-Chapelle).

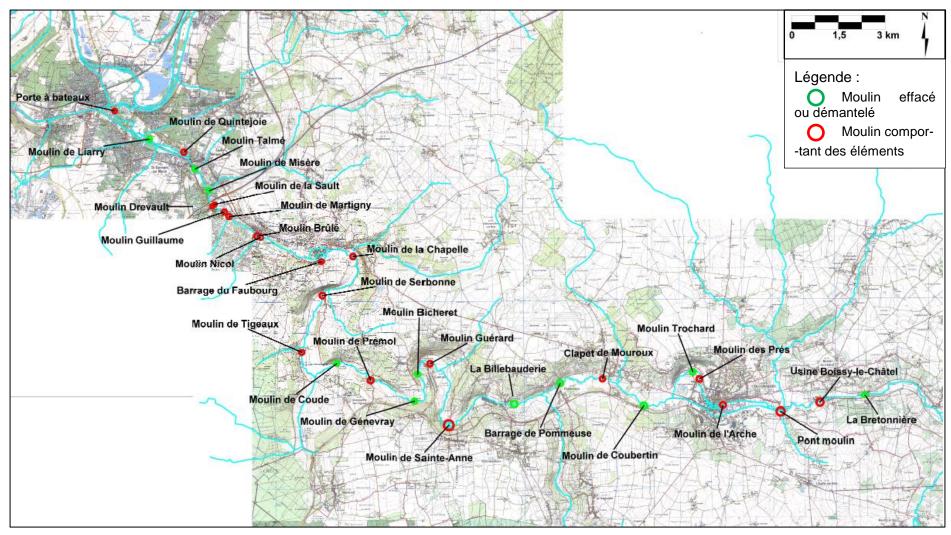


Figure 8 : Localisation des ouvrages hydrauliques du Grand Morin

Tableau 2 : Ouvrages hydrauliques présents sur la zone d'étude

N°	Nom de l'ouvrage		Commune	Section, n°	Propriétaire	
					Ass Galleria Continua	
1	La Bretonnière*	-	Boissy-le-Châtel	AK 155 et 156 A 1678, 1695,1696,1699, 1700, 1701, 1702 et	Le Moulin	
2	Usine de Boissy-le-Châtel	RG	Chailly-en-Brie	1213	Commune de Boissy- le-Châtel	
		RD	Boissy-le-Châtel	ZI 61,62 et 69	10 Gridion	
		RG	Chailly-en-Brie	A 1, 2, 3,		
3	Pontmoulin*	RD	Coulommiers	BD 4, 5, 7, 69, 70, 71, 84, 87, 88, 89 et 146 ZA 57	Mr Thomas	
4	Moulin de l'Arche	-	Coulommiers	AX 78 et 93	Commune	
		RG	Coulommiers	BT 123, 124, 125, 126 et 127	Commune de	
5	Moulin des Prés			BV 314 et 315	Coulommiers	
		RD	Mouroux	ZI 2	Codionininois	
		RG	Coulommiers	BV 1 et 2	0 1/1/14501051	
6	Moulin Trochard*	RD	Mouroux	ZI 5, 6, 52, 53 et 147 C 213	Société MECACEL	
		-	Mouroux	ZI 33 et 35		
7	Moulin de Coubertin*			F 335, 336, 337, 338 et 821	Stéphane Claeys	
				ZK 197, 200, 201, 202, 203 et 265		
8	Clapet de Mouroux	-	Mouroux	AC 328 et 547 ZL 7, 8, 9, 10 et 11	Commune	
				D 73, 74, 75, 76 et 792		
9	Barrage de Pommeuse*	-	Pommeuse	E 204	Jacky Thomas	
			_	C 283, 284, 282	_	
10	La Billebauderie*	-	Pommeuse	G 20, 1062, 1074, 1076, 1078, 1081 et 1099	Commune	
				A 972, 973, 974 et 1049		
11	Moulin Sainte-Anne	-	La Celle-sur-Morin	B 1630, 1631 et 1632	Maurice Michot	
'''				C 1, 2, 3, 7, 8, 9 et 1266		
				D 28, 31, 32, 33, 34, 237, 240, 242 et 243		
12	Moulin Guérard*	-	Guérard	E 157, 158 et 1432	Mr et Mmme	
				F 39, 40, 1032, 1069, 1072, 1089 et 1167	Fourgeaud	
13	Moulin Bicheret*	-	Guérard	D 1306, 1307, 1308, 1309 et 2515	Alain Bernu	
14	Moulin de Génevray*	=	Guérard	D 1868, 1870 et 1877 G 786, 787, 788, 789, 791 et 792	Antoine Papiernik	
	Moulin de Prémol	-	Guérard	D 1887, 1888, 1889, 1890, 1891, 1892, 1893,	Berkhauer Baudouin de Canecaude	
				1934, 1935, 1936, 1937, 1938 et 1939		
15				G 798, 799, 800, 801, 802, 803, 804, 805,		
				1345, 1346, 1385, 1386 et 1387		
16	Moulin de Coude*	RG	Dammartin-sur-Tigeaux	A 110, 111 et 112	Monique Leroy	
10	Modilii de Codde	RD	Guérard	B 1142	- Worlique Leiby	
17	Moulin de Tigeaux	_	Tigeaux	A 237, 409 et 410	Mr Joubin	
Ľ	Wodiiii do Tigodax			B 624, 625 et 626	Wil Godbill	
18	Moulin de Serbonne	RG	Voulangis	C 303 et D103	Anne Winckel	
		RD DC	Crécy-la-Chapelle	AO 1, 2, 4, 5, 6, 209 et 210		
19	Moulin de la Chapelle	RG RD	Voulangis Crécy-la-Chapelle	C 447 et 487 Al 99, 100 et 101	En cours de vente	
		RG	Voulangis	C 43, 44 et 46		
20	Barrage du Faubourg	RD	Crécy-la-Chapelle	B 291 et 294	Mr et Mme Gourbaud	
21	Moulin Nicol	-	Crécy-la-Chapelle	H 1115, 1117, 1120 et 1121	Mr Slava	
22	Moulin Brûlé	-	Villiers-sur-Morin	AD 40, 58, 59, 60 et 415	Gérard Troublé	
23	Moulin Martigny	-	Couilly-Pont-aux-Dames	AK 18, 19 et 20	Mme Garnier	
24	Moulin Guillaume	=	Villiers-sur-Morin	AB 118	Françoise Megret	
25	Moulin Drevault	-	Villiers-sur-Morin	A 2, 3, 6, 966, 967 et 968	Mr Beauvais	
26	Moulin de la Sault	PC Moulin do	Couilly-Pont-aux-Dames	C 3, 33, 775, 776, 777, 778 et 901	Mr Pellamourgue	
27	Moulin de Misère*	RG - Moulin de Misère	Saint-Germain-sur-Morin	B 365, 367, 368, 369, 1262 et 1267	Commune	
	cai do ivilocio	RD - Moulin de Pont- aux-Dames	Couilly-Pont-aux-Dames	YD 142, 143 et 253	Société LOFT	
28	Moulin de Talmé*	RG - Moulin Vieux	Saint-Germain-sur-Morin	AE 227, 228 et 434	Geneviève Boutier	
20	WOUNT UE TAITTE	RD - Moulin Talmé	Couilly-Pont-aux-Dames	AD 106, 107, 108, 150, 309 et 362	Robert Baud	
ا ـ ا		RG - Moulin Neuf	Saint-Germain-sur-Morin	AD 7 et 8	Gérard Gourovitch	
29	Moulin de Quintejoie	RD - Moulin de Quintejoie	Couilly-Pont-aux-Dames	B 771, 772, 773, 774 et 1447	Olivier Fagès	
20	Moulin de Lieres*	RG	Montry	B 125 et 126	M Do Doobo	
30	Moulin de Liarry*	RD	Condé-Ste-Libiaire	B 684 et 1047	M. Da Rocha	
21	Porto à hateaux	RG	Esbly	E 1	Commune d'Eable	
31	Porte à bateaux	RD	Condé-Ste-Libiaire	AB 2	Commune d'Esbly	
32	Moulin sur bras gauche		Esbly	E 3	Mme Saïd	
J2	(confluence)		Louiy	F 848, 849, 850 et 851	Willio Galu	

* Moulin effacé ou démantelé

III. CONTEXTE ADMINISTRATIF, JURIDIQUE ET REGLEMENTAIRE

III.1. CONTEXTE ADMINISTRATIF

La zone du syndicat du Grand Morin aval est établie sur :

- un grand bassin versant : le bassin Seine-Normandie ;
- une région : l'Ile de France ;
- un département : la Seine-et-Marne (77) ;
- 25 communes, dont 17 situées sur le cours du Grand Morin.

III.1.1. Acteurs impliqués

III.1.1.1. Etat

Le Ministère de l'Ecologie, de l'Energie, du Développement Durable, des Transport et du Logement (MEEDDTL) est chargé de définir, de mettre en œuvre et de coordonner la politique de l'état. Cela comprend une gestion efficace des ressources, à travers la mise en place de politiques adaptées de protection et de valorisation de la biodiversité et des milieux naturels.

Le préfet, au titre de l'Etat, s'assure à la fois de la bonne mise en œuvre de la réglementation dans le domaine de l'eau et du territoire, et de la prise en compte de l'intérêt général. Il dispose de quatre compétences majeures :

- la police de l'eau, déléguée à la DDT : réglementation et autorisation de tous les usages de l'eau, gestion raisonnée de la ressource, réalisation de contrôles, etc. ;
- la police de la pêche, déléguée à la DDT et à l'ONEMA : préservation des milieux aquatiques, protection du patrimoine piscicole, etc. ;
- la police de l'énergie : autorisations pour la production d'énergie hydraulique, assurance d'un débit minimal, etc. ;
- la police des installations classées pour la protection de l'environnement (ICPE), déléguée à la DRIEE : autorisation des ICPE, réalisation de contrôles, etc..

III.1.1.2. Agence de l'Eau Seine-Normandie

L'Agence de l'Eau Seine-Normandie (AESN) est un établissement public du MEDDE dont la mission est de financer les actions de protection des ressources en eau, de prévention et de réparation des dommages à l'environnement.

Elle fournit un soutien technique à tout organisme réalisant un ouvrage contribuant à améliorer la ressource en eau. Elle intervient également dans la mise en conformité des bâtiments d'élevage, l'amélioration des pratiques d'épandage, l'aménagement et l'entretien des rivières, etc..

L'AESN agit dans le cadre d'un programme qui fixe les objectifs à atteindre, le montant des aides à apporter et les redevances à recouvrer. Ce programme est arrêté par le comité de bassin. Adopté en octobre 2009, le 10^{ème} programme, valable pour la période 2013-2018, doit conduire à l'atteinte du bon état écologique sur les deux tiers des eaux de surface à l'échéance 2015, et il doit également contribuer aux objectifs de bon état pour 2021.

Comme les 5 autres Agences de l'Eau en France, l'AESN perçoit des redevances dont les usagers s'acquittent lorsqu'ils paient leur facture d'eau. Ces redevances lui permettent de remplir ses objectifs.

III.1.1.3. DRIEE et DREAL

La Direction Régionale et Interdépartementale de l'Environnement et de l'Energie (DRIEE) et la Direction Régionale de l'Environnement, de l'Aménagement et du Logement (DREAL) sont des services déconcentrés du MEEDDTL, placées sous l'autorité du préfet de la Région et du préfet coordinateur du bassin Seine-Normandie. Leur principale mission est de concilier protection, gestion de l'environnement et aménagement urbain dans un objectif de développement durable.

Elles sont également responsables des politiques de prévention des nuisances industrielles des établissements soumis à la législation des ICPE.

III.1.1.4. Entente Marne

L'Entente Marne est un Etablissement Public de coopération interdépartementale pour l'aménagement des rivières du bassin hydrographique de la Marne. Il a été créé un an après la crue de 1983, celle-ci ayant mis en évidence le mauvais état de la rivière Marne et de ses affluents.

L'Entente Marne réunit cinq départements : la Haute-Marne (52), la Meuse (55), la Marne (51), l'Aisne (02) et la Seine et Marne (77) ; son siège est basé à Châlons-en-Champagne.

A la suite des inondations survenues en septembre 2002, le MEEDDM a lancé un appel d'offres pour des Plans d'Actions de Prévention des Inondations (P.A.P.I.). En juin 2003, le projet de L'Entente Marne, en partenariat avec l'I.I.B.R.B.S., a été retenu sur la base d'un programme d'études devant définir précisément les risques d'inondation du bassin versant de la Marne.

L'étude, étalée de 2005 à 2008, est un outil d'aide à la décision pour les élus concernant les actions et aménagements à mettre en œuvre sur le bassin pour réduire le risque inondation.

Le Grand Morin est intégré dans le périmètre d'étude sur son linéaire en Seine-et-Marne.

III.1.1.5. Direction Départementale des Territoires de Seine-et-Marne

Placée sous l'autorité directe du préfet, la DDT est chargée des questions concernant l'assainissement, les adductions d'eau et le drainage dans les communes rurales, l'hydraulique, la pêche, la lutte contre les pollutions diffuses, l'agriculture... Elle assure également les missions de la police de l'eau.

III.1.1.6. Syndicat Mixte d'Etudes et de Travaux pour l'Aménagement et l'Entretien du Bassin du Grand Morin

Le Syndicat Mixte d'Etudes et de Travaux pour l'Aménagement et l'Entretien du Bassin du Grand Morin sis à Crécy-la-Chapelle est situé à l'Est de Marne-la-Vallée. Il regroupe 25 communes du bassin versant du Grand Morin en aval de Boissy le Châtel dans le département de Seine-et-Marne :

- Dix-sept communes situées sur le cours du Grand Morin :

Boissy-le-Châtel; Chailly-en-Brie; Coulommiers; Mouroux; Pommeuse; La Celle-sur-Morin; Guérard; Dammartin-sur-Tigeaux; Tigeaux; Crécy-la-Chapelle; Voulangis; Villiers-sur-Morin; Couilly-Pont-aux-Dames; Saint-Germain-sur-Morin; Montry; Esbly; Condé-Sainte-Libiaire.

- Huit communes situées sur son bassin versant :

Faremoutiers; Sancy-les-Meaux; Bouleurs; Boutigny; Vaucourtois; Coulommes; Coutrevoult; Quincy-Voisins.

III.1.1.7. Communes et regroupements de communes

Les maires des communes, chargés de la police municipale, assurent le bon ordre, la sécurité et la salubrité publique (article L. 2212.2 du Code des collectivités territoriales). Ils interviennent notamment au titre de la police de l'eau et de l'urbanisme.

Les communes adoptent des documents d'urbanisme (Plans Locaux d'Urbanisme, succédant aux Plans d'Occupation des Sols) qui déterminent l'affectation des sols à certains usages et les réglementent. Ces usages sont autorisés par le maire.

Les compétences de gestion des communes relatives à l'eau ou à l'aménagement du territoire peuvent être transférées à des institutions intercommunales.

III.1.2. Démarche d'enquête

Des enquêtes ont été menées auprès de différents organismes ou personnes intéressées par la gestion des ouvrages à vannages, sur la base d'un entretien semi-directif.

Les organismes et personnes rencontrés ou contactés sont les suivants :

- les propriétaires des moulins ;
- les collectivités (Syndicat du Grand Morin Aval et représentants des communes) ;
- les usagers de la rivière (CDCK77 et CRIFCK, AAPPMA Crécy-la-Chapelle, etc.).

Les discussions ont montré que les usagers sont fortement attachés au patrimoine qui existe sur le Grand Morin. Des problèmes ont cependant été mis en évidence, notamment concernant l'entretien de certains ouvrages reste problématique. L'ensemble des interlocuteurs montre un intérêt quant aux problématiques écologiques soulevées par l'étude.

III.2. CONTEXTE JURIDIQUE

III.2.1. Cadre réglementaire

III.2.1.1. Directive Cadre Européenne sur l'eau

La Directive Cadre Européenne sur l'eau du 23 octobre 2000 (directive 2000/60) vise à donner une cohérence à l'ensemble de la législation avec une politique communautaire globale dans le domaine de l'eau. Elle définit un cadre pour la gestion et la protection des eaux par grand bassin hydrographique au plan européen avec une perspective de développement durable.

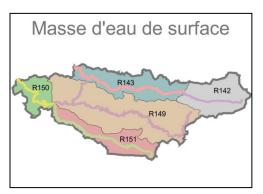
La DCE fixe des objectifs pour la préservation et la restauration de l'état des eaux superficielles (eaux douces et eaux côtières) et pour les eaux souterraines. L'objectif général est d'atteindre d'ici à 2015 le bon état des différents milieux sur tout le territoire européen.

Les grands principes de la DCE sont :

- une gestion par bassin versant ;
- la fixation d'objectifs par « masse d'eau » ;
- une planification et une programmation avec une méthode de travail spécifique et des échéances ;
- une analyse économique des modalités de tarification de l'eau et une intégration des coûts environnementaux ;
- une consultation du public dans le but de renforcer la transparence de la politique de l'eau.

Pour l'atteinte du bon état des eaux de surface, deux définitions sont à considérer :

• l'état écologique des masses d'eau qui s'évalue sur la base de paramètres biologiques et physico-chimiques sous-tendant la biologie ;



• l'état chimique des masses d'eau, destiné à vérifier le respect des normes de qualité environnementales, qui ne prévoit que deux classes d'état : respect et non-respect. Les paramètres concernés sont les substances dangereuses (annexe IX de la DCE) et les substances prioritaires (annexe X de la DCE).

Le bon état des eaux de surface est atteint lorsque son état écologique ET chimique sont au minimum « bons ».

Une « masse d'eau » est définie comme un tronçon de cours d'eau et son bassin versant associé, un lac, un étang, une portion d'eaux côtières, tout ou partie d'un ou plusieurs aquifères, d'une taille suffisante pour permettre le fonctionnement des processus biologiques et physicochimiques dont elle est le siège. Elle possède un état homogène vis-à-vis de ces critères tant du point de vue qualitatif que quantitatif, qui justifie un objectif de gestion déterminé.

L'unité hydrographique du Grand Morin et du Petit Morin est décomposée en 5 masses d'eau de surface et en 2 masses d'eau souterraines :

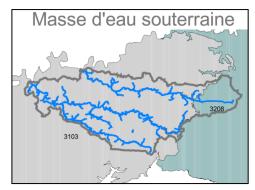


Figure 9 : Carte des Masses d'Eau Grand et Petit Morin (Source : AESN)

Notre zone d'étude est concernée par les masses d'eau superficielles R 149 et R 150 et la masse d'eau souterraine 3103. Les objectifs sont présentés dans la partie « écologie ».

III.2.1.1. LEMA

La Loi sur l'Eau et les Milieux Aquatiques (LEMA), promulguée en décembre 2006, définit le cadre réglementaire de la politique de l'eau au niveau national mais également le droit communautaire adopté par chaque état membre de l'Union Européeenne. Ses objectifs principaux sont :

- atteindre les objectifs de la DCE, en particulier le « bon état » à l'horizon 2015 ;
- améliorer les conditions d'accès à l'eau pour tous et apporter plus de transparence au fonctionnement du service public de l'eau;
- rénover l'organisation institutionnelle.

Avec cette loi, la France s'est dotée de nouveaux outils réglementaires permettant d'améliorer la lutte contre les pollutions ponctuelles et diffuses, la gestion quantitative de l'eau, la restauration du bon fonctionnement des milieux aquatiques.

III.2.1.2. SDAGE

Le Schéma Directeur d'Aménagement et de Gestion des Eaux (SDAGE) du bassin Seine-Normandie 2010-2015 a été adopté en comité de bassin du 29 octobre 2009.

Il décrit la stratégie du bassin pour stopper la détérioration des eaux et retrouver un bon état de toutes les eaux, cours d'eau, plans d'eau, nappes et côtes, en tenant compte des facteurs naturels (délais de réponse de la nature), techniques (faisabilité) et économiques.

Huit enjeux ont été identifiés pour la reconquête de la qualité des eaux du bassin :

- diminuer les pollutions ponctuelles des milieux par les polluants classiques ;
- diminuer les pollutions diffuses des milieux aquatiques ;
- réduire les pollutions des milieux aquatiques par les substances dangereuses ;
- réduire les pollutions microbiologiques des milieux ;
- protéger les captages d'eau pour l'alimentation en eau potable actuelle et future ;
- protéger et restaurer les milieux aquatiques et humides ;
- gestion de la rareté de la ressource en eau ;
- limiter et prévenir le risque d'inondation.

Le SDAGE a une portée juridique, puisque les programmes et décisions administratives dans le domaine de l'eau (autorisations, déclarations, schémas départementaux des carrières, etc.) et les schémas d'aménagement et de gestion des eaux (SAGE) doivent être compatibles ou rendus compatibles avec les dispositions du SDAGE. Les documents d'urbanisme (schémas de cohérence territoriale, plans locaux d'urbanisme, cartes communales, etc.) doivent être compatibles avec ses orientations fondamentales et ses objectifs.

L'atteinte de ces objectifs nécessite une implication qui apparait notamment dans le 10 programme de l'Agence de l'eau Seine-Normandie. Celui-ci doit conduire à l'atteinte du bon état écologique sur les deux tiers des eaux de surface à l'échéance 2015, et il doit également contribuer au bon état pour 2021. C'est également dans ce cadre que les Plans Territoriaux d'Actions Prioritaires (PTAP) sont renforcés pour décliner ce programme à l'échelle des sousbassins (territoires des commissions territoriales). L'ensemble de ces outils concrétisent localement les moyens permettant d'atteindre ses objectifs.

III.2.1.3. SAGE

Le SAGE est une déclinaison locale des enjeux du SDAGE. Il fixe les objectifs généraux d'utilisation, de mise en valeur et de protection quantitative et qualitative des ressources en eau superficielle et souterraine, des écosystèmes aquatiques, ainsi que les objectifs de préservation des zones humides.

La démarche SAGE a pour ambition de réunir les différents usages et usagers de la ressource en eau sur le territoire considéré au sein d'une commission locale de l'eau, afin d'élaborer des décisions concertées.

Un SAGE est valable entre 10 et 15 ans et doit être compatible avec les orientations du SDAGE. Tout comme les SDAGE, le SAGE a été reconnu comme un outil de gestion à part entière pour appliquer la DCE.

Le Grand Morin aval fait partie du périmètre du « SAGE des Deux Morin ». Celui-ci s'attache aux enjeux suivants :

- Amélioration de l'Alimentation en Eau Potable ;
- ♦ Réduction de l'impact agricole ;
- Amélioration de l'assainissement en milieu rural ;
- Lutte contre les inondations ;
- Préservation des marais de Saint-Gond.

En amont de la rédaction du projet SAGE, l'élaboration de plusieurs documents de travail est requise : l'état des lieux, le diagnostic, les scénarios tendanciels et alternatifs. Ces différents documents ont été validés par la CLE sur la période 2010 - 2012.

La phase stratégie, qui capitalise sur le travail réalisé depuis l'état des lieux et doit donner une lecture et une déclinaison claires des objectifs définis lors des phases de scénarios, a été validée par la CLE en février 2013. Elle a préparé en outre la rédaction en cours du Plan d'Aménagement et de Gestion Durable (PAGD) et du règlement qui constitue la dernière phase d'élaboration du SAGE.

III.2.1.4. Autres

a. Classement des cours d'eau

Avant la promulgation de la loi sur l'eau et les milieux aquatiques du 30 décembre 2006 (LEMA), les rivières pouvaient être classées :

- en rivières « réservées » au titre de l'article 2 de la loi de 1919 sur l'utilisation de l'énergie hydraulique où les nouveaux aménagements hydrauliques sont interdits ;
- en rivières « classées » au titre de l'article L. 432-6 du code de l'environnement où des ouvrages hydrauliques peuvent être installés à condition d'être équipés notamment de dispositifs de franchissement pour les poissons migrateurs.

Le Grand Morin est actuellement classé comme « cours d'eau migrateur ». Ce classement implique que tout ouvrage situé sur son cours doit comporter des dispositifs assurant le passage des poissons migrateurs. A compter de la publication de la liste des espèces migratrices, les ouvrages doivent être mis en conformité dans un délai de 5 ans.

Cependant, la LEMA (art. L. 214-17 et L. 214-18 du Code de l'environnement) a réformé ces dispositifs de classement en les adaptant aux exigences du droit communautaire (Directive cadre sur l'eau du 23 octobre 2000 et directive « Energie » du 27 septembre 2001).

Il faut désormais distinguer :

- ♦ (Liste 1) les cours d'eau, parties de cours d'eau ou canaux classés en « très bon état écologique » ou jouant le rôle de « réservoir biologique » sur lesquelles aucune autorisation ou concession ne peut être accordée pour la construction de nouveaux ouvrages s'ils constituent un obstacle à la continuité écologique ;
- Liste 2) les cours d'eau dans lesquels il est nécessaire d'assurer le transport suffisant des sédiments et la circulation des poissons migrateurs où tout ouvrage doit y être géré, entretenu et équipé dans un délai de cinq ans selon les règles définies par l'autorité administrative (Préfet) en concertation avec le propriétaire ou, à défaut, l'exploitant.

Ces cours d'eau figurent sur des listes qui conditionnent également le régime juridique applicable aux ouvrages hydrauliques présents. Un même cours d'eau (ou section) peut être inscrit sur les deux listes.

Des prescriptions complémentaires peuvent être imposées par arrêté (art. R. 214-17 du Code de l'environnement) sur ces cours d'eau classés et imposer l'arasement partiel de l'ouvrage, l'installation de passes à poissons, etc.).

Le Grand Morin est classé en liste 1 de Meilleray, situé en amont de notre zone d'étude, jusqu'à la confluence avec la Marne.

De plus, une partie de son linéaire, de Meilleray jusqu'à l'usine de Boissy-le-Châtel, est également classée en liste 2.

Par ailleurs, le ru de Pietree, le ru de Courtevrain, le ru de Bonneval et l'Aubetin (réservoir biologique et ru de l'Oursine) sont classés en liste 1.

En fonction de leur position sur la rivière et du classement, le statut des ouvrages est présenté dans le tableau ci-dessous :

Tableau 3 : Statut des ouvrages quant au classement du Grand Morin

Intitulé	Commune	Classement	
Moulin de la Bretonnière	Boissy-le-Châtel	Listes 1 et 2	
Usine de Boissy-le-Châtel	Boissy-le-Châtel, Chailly-en-Brie	Listes 1 et 2	
Pontmoulin	Coulommiers, Chailly-en-Brie	Liste 1	
Moulin de l'Arche	Coulommiers	Liste 1	
Vannage des Religieuses et des Tanneurs	Coulommiers	Liste 1	
Moulin des Prés	Coulommiers, Mouroux	Liste 1	
Moulin Trochard	Coulommiers, Mouroux	Liste 1	
Moulin de Coubertin	Mouroux	Liste 1	
Clapet de Mouroux	Mouroux	Liste 1	
Barrage de Pommeuse	Pommeuse	Liste 1	
La Billebauderie	Pommeuse	Liste 1	
Moulin de Sainte-Anne	La Celle-sur-Morin	Liste 1	
Moulin Guérard	Guérard	Liste 1	
Moulin Bicheret	Guérard	Liste 1	
Moulin de Génevray	Guérard	Liste 1	
Moulin de Prémol	Guérard	Liste 1	
Moulin de Coude	Guérard, Dammartin-sur- Tigeaux	Liste 1	
Moulin de Tigeaux	Tigeaux	Liste 1	
Moulin de Serbonne	Voulangis, Crécy-la-Chapelle	Liste 1	
Moulin de la Chapelle	Voulangis, Crécy-la-Chapelle	Liste 1	
Barrage du Faubourg	Voulangis, Crécy-la-Chapelle	Liste 1	
Moulin Brûlé	Villiers-sur-Morin	Liste 1	
Moulin Nicol	Crécy-la-Chapelle	Liste 1	
Moulin Guillaume	Villiers-sur-Morin	Liste 1	
Moulin Martigny	Couilly Pont-aux-Dames	Liste 1	
Moulin Drevault	Villiers-sur-Morin	Liste 1	
Moulin de la Sault	Couilly Pont-aux-Dames	Liste 1	
Moulin de Misère	Saint-Germain-sur-Morin	Liste 1	
MOUIIII UE MISEIE	Couilly Pont-aux-Dames	Liste 1	
Moulin Talmé	Couilly Pont-aux-Dames, Saint- Germain-sur-Morin	Liste 1	
Moulin de Quintejoie	Couilly Pont-aux-Dames, Saint- Germain-sur-Morin	Liste 1	
Moulin de Liarry	Condé Ste-Libiaire, Montry	Liste 1	
Porte à Bateaux	Condé Ste-Libiaire, Esbly	Liste 1	

b. Décret frayère

Le décret n° 2008-283 du 25 mars 2008, relatif aux frayères et aux zones de croissance ou d'alimentation de la faune piscicole et modifiant le code de l'environnement, présente les dispositions suivantes.

- *Art. R. 432-1* Les espèces de la faune piscicole dont les frayères et les zones d'alimentation et de croissance doivent être particulièrement protégées de la destruction par l'article L. 432-3 sont réparties, par arrêté du ministre chargé de l'environnement, entre les deux listes suivantes :
 - ◆ 1 Sont inscrites sur la première liste les espèces de poissons dont la reproduction est fortement dépendante de la granulométrie du fond du lit mineur d'un cours d'eau. L'arrêté précise les caractéristiques de la granulométrie du substrat minéral correspondant aux frayères de chacune des espèces ;
 - ◆ 2 Sont inscrites sur la seconde liste les espèces de poissons dont la reproduction est fonction d'une pluralité de facteurs, ainsi que les espèces de crustacés.

Art. R. 432-1-1 - Le préfet de département établit les inventaires suivants :

- I Pour chacune des espèces de poissons figurant sur la première liste, un inventaire des parties de cours d'eau susceptibles d'abriter des frayères, établi à partir des caractéristiques de pente et de largeur de ces cours d'eau qui correspondent aux aires naturelles de répartition de l'espèce;
- II Pour chacune des espèces de poissons figurant sur la seconde liste, un inventaire des parties de cours d'eau ou de leurs lits majeurs dans lesquelles ont été constatées la dépose et la fixation d'œufs ou la présence d'alevins de l'espèce au cours de la période des dix années précédentes;
- III Pour chacune des espèces de crustacés figurant sur la seconde liste, un inventaire des parties de cours d'eau où la présence de l'espèce considérée a été constatée au cours de la période des dix années précédentes.
- Art. R. 432-1-2 Les inventaires établis en application de l'article R. 432-1-1 sont transmis à la fédération départementale ou interdépartementale des associations agréées de pêche et de protection du milieu aquatique, au conseil départemental de l'environnement et des risques sanitaires et technologiques et à la commission départementale de la nature, des paysages et des sites, qui disposent de trois mois pour émettre un avis. A défaut, cet avis est réputé favorable.

Art. R. 432-1-3 - Le préfet arrête les inventaires prévus par l'article R. 432-1-1. Le ou les arrêtés sont publiés au recueil des actes administratifs du département.

Art. R. 432-1-4 - Les inventaires prévus par l'article R. 432-1-1 sont arrêtés avant le 30 juin 2012.

Les inventaires prévus par le II et le III de l'article R. 432-1-1 sont mis à jour au moins une fois tous les dix ans, selon les modalités prévues pour leur établissement.

Art. R. 432-1-5

- I. Constitue une frayère à poissons, au sens de l'article L. 432-3 :
- 1 Toute partie de cours d'eau qui figure dans un inventaire établi en application du I de l'article R. 432-1-1 et dont le lit est constitué d'un substrat minéral présentant les caractéristiques de la granulométrie propre à la reproduction d'une des espèces de poissons inscrites sur la première liste prévue par l'article R. 432-1;
- 2 Toute partie de cours d'eau figurant dans un inventaire établi en application du II de l'article R. 432-1-1.
- II. Constitue une zone de croissance ou d'alimentation de crustacés, au sens de l'article L. 432-3, toute partie de cours d'eau figurant dans un inventaire établi en application du III de l'article R. 432-1-1.

L'article L. 432-3 implique que le fait de détruire les frayères ou les zones de croissance ou d'alimentation de la faune piscicole est puni de 20 000 euros d'amende, à moins qu'il ne résulte d'une autorisation ou d'une déclaration dont les prescriptions ont été respectées ou de travaux d'urgence exécutés en vue de prévenir un danger grave et imminent.

Sur la zone d'étude, le Grand Morin est classé en liste 1 (chabot, lamproie de planer, truite fario et vandoise) sur tout son linéaire. Par ailleurs, deux tronçons sont classés en liste 2 (brochet) :

- du moulin des prés à la confluence avec l'Aubetin ;
- du pont de l'autoroute A4 jusqu'à la confluence avec la Marne.

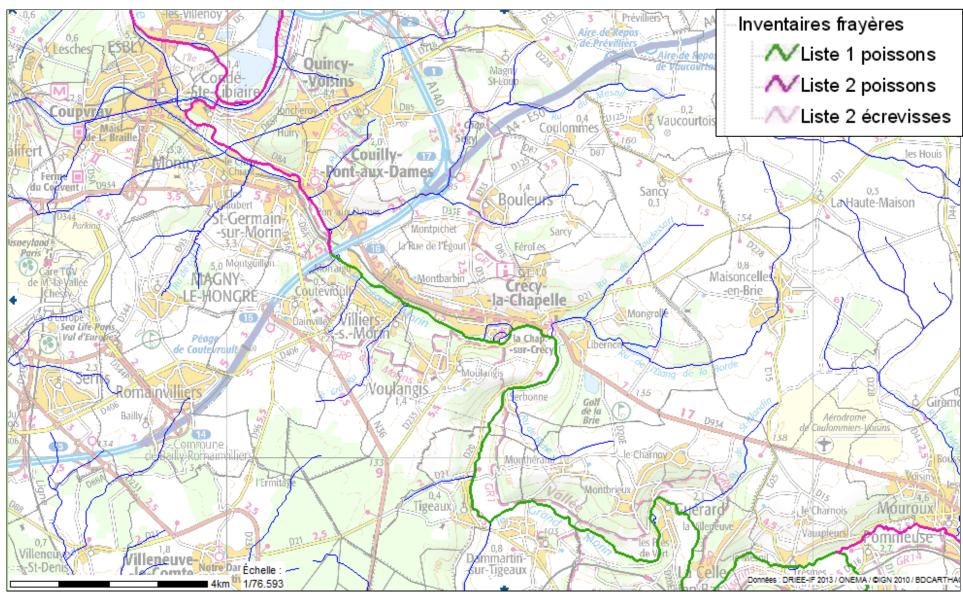


Figure 10 : Cartographie des inventaires frayères (1/2)

Figure 11: Cartographie des inventaires frayères (2/2)

c. Plan d'action national pour la restauration de la continuité écologique des cours d'eau

Un plan d'action de restauration de la continuité écologique des cours d'eau, à l'échelle du territoire national a été annoncé le 13 novembre 2009. Une circulaire de janvier 2010 en explique la mise en œuvre.

Ce plan se base sur le contexte réglementaire en vigueur, à savoir :

- ◆ La directive-cadre sur l'eau du 23 octobre 2000 (DCE) fixe aux Etats membres un objectif général de non-dégradation et d'atteinte du « bon état » des cours d'eau à l'échéance de 2015.
- La loi n°2009-967 du 3 août 2009 de mise en œuvre du Grenelle de l'Environnement dite « Loi Grenelle I » qui instaure dans le droit français la création de la Trame verte et bleue, d'ici à 2012, impliquant l'État, les collectivités territoriales et les parties concernées sur une base contractuelle.
- ◆ Le plan de plan de gestion de l'anguille en France, en application du règlement européen n°1100-2007 du 18 septembre 2007 instituant des mesures pour la reconstitution d'un stock d'anguilles en Europe, et validé par la Commission Européenne le 15 février 2010.

Le plan d'action a un objectif chiffré d'un total de 1200 ouvrages à « traiter » à l'échelle nationale d'ici à 2012, en cohérence avec l'objectif d'environ 1500 ouvrages à traiter d'ici à 2015 dans le cadre du plan de gestion anguille (PGA).

Les services de l'Etat ont eu pour mission au cours de l'année 2010 de proposer par cours d'eau, une liste d'ouvrages prioritaires devant être traités à l'échéance 2012, une phase de concertation avec les agences de l'eau et les collectivités concernées devant s'en suivre, pour une validation finale par le Comité de bassin.

III.2.2. Contexte local

III.2.2.1. Domanialité

Faute de définition juridique, on caractérise les cours d'eau non domaniaux par opposition aux cours d'eau domaniaux. Sont considérés comme privés les cours d'eau qui ne sont ni navigables, ni flottables, les ruisseaux, les torrents, ou petites rivières.

Le propriétaire foncier d'un fond bordé par un cours d'eau non domanial est titulaire de deux droits distincts et complémentaires constituant le droit de riveraineté :

- droit de propriété jusqu'à la moitié du lit (L215-2 CE Loi du 8 avril 1898) ;
- droit d'usage (L215-1, L215-2 CE Article 644 du Code Civil).

Il est également propriétaire des alluvions, relais, atterrissements et îles qui se forment dans les cours d'eau.

Cependant, le Code de l'Environnement précise dans son article 1^{er} que « dans tous les cas, les droits des tiers sont et demeurent préservés ».

Les droits des riverains de cours d'eau non domaniaux, sous réserve des autorisations administratives éventuellement nécessaires au titre de la loi sur l'eau sont les suivants :

- droit d'usage de l'eau à des fins domestiques (ex : abreuvoir, arrosage, etc.) ;
- droit d'extraction des vases, pierres, sables (sans toucher au lit naturel, sans modifier le régime des eaux et sans porter préjudice à la faune piscicole) ;
- droit de pêche (mais ne dispense pas de l'achat de la carte de pêche) ;
- droit de clôture (mais sans faire obstacle à l'écoulement des eaux) ;
- droit de faire un ponton enjambant le cours d'eau (si propriétaire des deux berges) ;
- ♦ droit de rétablir le cours initial en cas de déplacement du lit (mais si ce n'est pas fait au bout d'un an, c'est le nouveau lit qui prévaut L215-4 CE).).

La partie aval du Grand Morin, depuis le Moulin de Coude (Dammartin sur-Tigeaux) jusqu'à la confluence avec la Marne, à l'exception du bras d'Esbly, est domaniale. En revanche, la partie comprise entre Boissy-le-Châtel et le Moulin de Coude est non-domaniale.

III.2.2.2. Droit d'eau

Un moulin se distingue d'un simple bâtiment par l'existence d'un « droit d'eau ». La consistance légale du droit d'eau définit l'ensemble des principales caractéristiques du droit à l'usage de l'eau dont est titulaire le propriétaire d'un fond bordant un cours d'eau. Il s'applique en particulier à l'exploitation de la force motrice de l'eau par les moulins. Il existe deux catégories de droit d'eau sur un cours d'eau non domanial : le droit d'eau fondé en titre et le droit d'eau fondé sur titre.

a. Droit d'eau fondé en titre

Le droit d'eau fondé en titre concerne les ouvrages antérieurs à la révolution de 1789. Ce droit est attaché à la prise d'eau et aux ouvrages permettant l'utilisation de la force motrice. Il n'est pas attaché au bâtiment du moulin en tant que tel. Le propriétaire peut prouver son droit, lorsqu'il ne dispose pas d'acte authentique, s'il retrouve une preuve de l'existence du moulin avant l'abolition du régime féodal le 4 août 1789 (en consultant les archives départementales : carte de Cassini, actes notariés, etc.). Toutefois, ce droit fondé en titre ne présume pas de la légalité de l'ouvrage dans son état actuel. S'il y a eu des modifications entraînant un changement de la puissance motrice, il est nécessaire d'engager une nouvelle procédure d'autorisation. La consistance d'un droit fondé en titre est présumé, sauf preuve du contraire, conforme à sa consistance actuelle (Conseil d'Etat 16/01/2006).

Le titulaire d'un droit fondé en titre peut souhaiter que celui-ci soit reconnu afin d'exploiter à nouveau un ouvrage. Il doit prouver l'existence de ce droit et la police de l'eau est applicable (la nouvelle exploitation peut ainsi être refusée ou modifiée dans les conditions définies à l'article L. 214-4 du Code de l'environnement).

b. Droit d'eau fondé sur titre

Le droit fondé sur titre, établi après 1790 (abolition des droits féodaux), s'adresse aux autres moulins, ou aux moulins fondés en titre lorsque leur consistance légale a subi une modification entraînant une augmentation de la puissance motrice, il résulte de l'adoption par l'administration d'un règlement d'eau. Le droit fondé sur titre résulte toujours d'une autorisation par arrêté préfectoral, voire une ordonnance royale ou un arrêté du Président (entre 1790 et 1852). Il s'appuie sur l'existence d'un règlement d'eau.

Une autorisation peut être retirée (ou modifiée) notamment dans les cas suivants (articles L. 214-4 et L. 215-10 du Code de l'environnement) :

- dans l'intérêt de la salubrité publique (notamment lorsque ce retrait ou cette modification est nécessaire à l'alimentation en eau potable des populations) ;
- pour prévenir ou faire cesser les inondations ou en cas de menace pour la sécurité publique;
- en cas de menace majeure pour le milieu aquatique (notamment lorsque ces milieux sont soumis à des conditions hydrauliques critiques non compatibles avec leur préservation);
- lorsque les ouvrages ou installations sont abandonnés ou ne font plus l'objet d'un entretien régulier depuis au moins 20 ans.

c. Cas du Grand Morin

Le tableau suivant est un bilan des arrêtés de réglementation des ouvrages présents sur le Grand Morin aval.

Tableau 4 : Date des arrêtés de réglementation des ouvrages du Grand Morin aval (source : Bazin 1901)

Intitulé	Commune	Date de l'arrêté de réglementation		
Moulin de la Bretonnière	Boissy-le-Châtel	19 octobre 1835 et 8 mars 1852		
Usine de Boissy-le-Châtel	Boissy-le-Châtel, Chailly-en-Brie	3 février 1833		
Pontmoulin	Coulommiers, Chailly-en-Brie	26 avril 1855		
Moulin de l'Arche	Coulommiers	-		
Vannage des Religieuses et des Tanneurs	Coulommiers	12 septembre 1853		
Moulin des Prés	Coulommiers, Mouroux	20 juillet 1853		
Moulin Trochard	Coulommiers, Mouroux	23 février 1853		
Moulin de Coubertin	Mouroux	21 mars 1853		
Clapet de Mouroux	Mouroux	4 avril 1851		
Barrage de Pommeuse	Pommeuse	31 juillet 1854		
La Billebauderie	Pommeuse	-		
Moulin de Sainte-Anne	La Celle-sur-Morin	Ordonnance royale du 22 février 1826 et décret du 24 novembre 1854		
Moulin Guérard	Guérard	-		
Moulin Bicheret	Guérard	-		
Moulin de Génevray	Guérard	17 novembre 1855		
Moulin de Prémol	Guérard	31 août 1860		
Moulin de Coude	Guérard, Dammartin-sur- Tigeaux	13 septembre 1860		
Moulin de Tigeaux	Tigeaux	-		
Moulin de Serbonne	Voulangis, Crécy-la-Chapelle	Fondé en titre		
Moulin de la Chapelle	Voulangis, Crécy-la-Chapelle	-		
Barrage du Faubourg	Voulangis, Crécy-la-Chapelle	-		
Moulin Brûlé	Villiers-sur-Morin	Décret du 5 juin 1811		
Moulin Nicol	Crécy-la-Chapelle	Décret du 5 juin 1810		
Moulin Guillaume	Villiers-sur-Morin	Ordonnance royale du 30 juin 1835		
Moulin Martigny	Couilly Pont-aux-Dames	Ordonnance royale du 30 juin 1834		
Moulin Drevault	Villiers-sur-Morin	Ordonnance royale du 27 décembre 1845		
Moulin de la Sault	Couilly Pont-aux-Dames	Ordonnance royale du 27 décembre 1844		
Moulin de Misère	Saint-Germain-sur-Morin	Fondé sur titre		
MOUIIII UC MISCIC	Couilly Pont-aux-Dames	Fondé en titre		
Moulin Talmé	Couilly Pont-aux-Dames, Saint- Germain-sur-Morin	Fondé en titre		
Moulin de Quintejoie	Couilly Pont-aux-Dames, Saint- Germain-sur-Morin	Fondé en titre		
Moulin de Liarry	Condé Ste-Libiaire, Montry	Ordonnance royale du 17 janvier 1822		
Porte à Bateaux	Condé Ste-Libiaire, Esbly	Fondé en titre		

III.2.2.3. Règlement d'eau

Le règlement d'eau est la pièce administrative essentielle d'un moulin. D'une part, il autorise l'ouvrage sur la base de la consistance légale, et l'officialise vis-à-vis des tiers. D'autre part, il fixe les conditions de fonctionnement telles que :

- ♦ le niveau d'eau légal de la retenue (niveau maximum) matérialisé par un repère généralement en fonte, scellé dans un mur ;
- les dimensions des ouvrages : chaussée, déversoir, vannes de décharge ;
- les devoirs de l'usinier : entretien du bief, maintenance, jours de chômage ;
- la gestion du plan d'eau amont par la manœuvre des vannes ;
- les éventuelles servitudes : droits de passage pour l'entretien, etc...

III.2.2.1. Débit réservé

L'article L. 214-18 du code de l'environnement, modifié par la loi sur l'eau et les milieux aquatiques du 30 décembre 2006 (LEMA), prévoit en son IV que les obligations qu'il établit en matière de débit réservé sont applicables aux ouvrages existants, à la date de renouvellement de leur titre, et au plus tard au 1er janvier 2014.

L'obligation principale consiste à maintenir dans le cours d'eau à l'aval de l'ouvrage un débit minimal garantissant en permanence la vie, la circulation et la reproduction des espèces vivant dans les eaux au moment de l'installation de l'ouvrage. Ce débit minimum « biologique », appelé ci-après « débit réservé », ne doit pas être inférieur à un plancher qui est fixé au 10e du module interannuel du cours d'eau, pour l'essentiel des installations, et au 20e de ce module pour les ouvrages situés sur un cours d'eau dont le module est supérieur à 80 m3/s, ou pour les ouvrages hydroélectriques contribuant à la production d'électricité en période de pointe de consommation, listés par décret. Si le débit à l'amont immédiat de l'ouvrage est inférieur à ce plancher, c'est ce débit entrant qui doit être respecté à l'aval.

La circulaire DGALN/DEB/SDEN/E4 du 21/10/2009 relative à la mise en œuvre du relèvement au 1er janvier 2014 des débits réservés des ouvrages existants précise les modalités de mise en œuvre de cette obligation légale.

IV. MILIEU PHYSIQUE

IV.1. PLUVIOMETRIE

IV.1.1. Données disponibles

Les données pluviométriques sont issues des données climatologiques de base, consultables sur le site de données publiques de Météo France. La station pluviométrique retenue est la station de Crécy-la-Chapelle (indicatif 77142001). C'est une station manuelle de type 4 qui dispose des données pluviométriques suffisantes pour une analyse statistique de la pluviométrie locale.

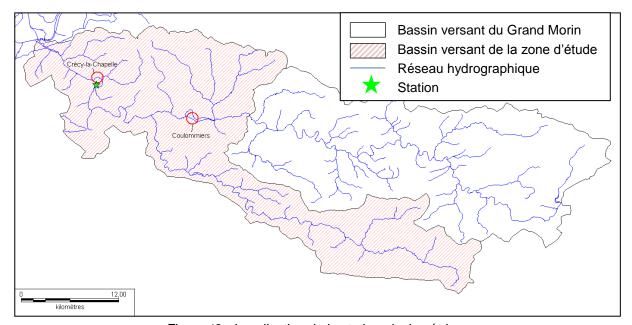
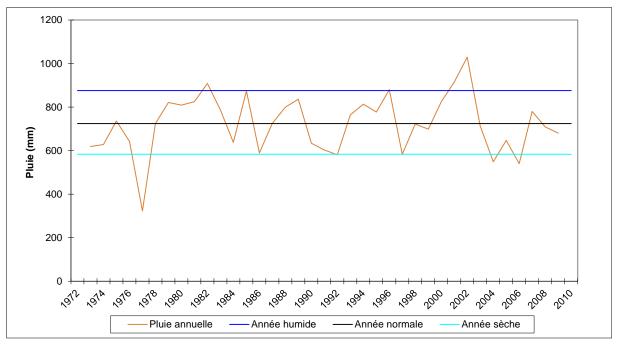



Figure 12 : Localisation de la station pluviométrique

IV.1.2. Etude des pluies

IV.1.2.1. Pluviométrie annuelle

<u>Figure 13 : Evolution des précipitations annuelles pour la station pluviométrique de Crécy-la-Chapelle depuis 1972</u>

Il ressort de ce graphique que la moyenne annuelle est de 720,8 mm/an sur la période 1972 à 2010, le maximum se présentant en 2001 avec 1029,6 mm et le minimum en 1976 avec 323 mm.

Remarque : les pluviométries de référence sont respectivement les centiles 10%, 50% et 90% de la série de données de pluies mensuelles. Les centiles représentent les fréquences de dépassement d'un seuil fixé [Fréquence empirique de Hazen] par exemple : pour le centile 10 %, sur la série des observations, seules 10 % des valeurs sont en dessous ; ce qui correspond à une faible probabilité, et donc un événement exceptionnel.

IV.1.2.2. Pluviométrie mensuelle

Les caractéristiques mensuelles à la station de Crécy-la-Chapelle sont présentées sur le graphique suivant.

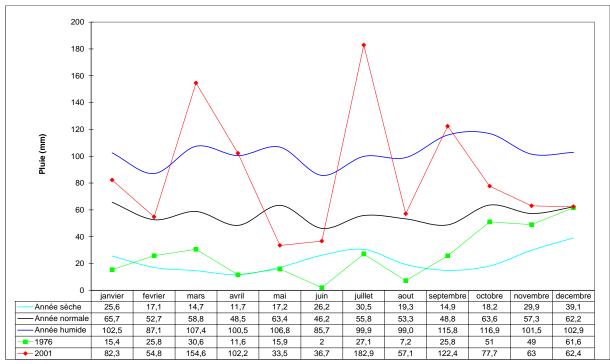


Figure 14 : Quantile expérimentaux de distribution des pluies mensuelles à Crécy-la-Chapelle (1972-2010)

Ce graphique présente les centiles des pluies mensuelles de Crécy-la-Chapelle ainsi que l'année la plus humide (2001) et l'année la plus sèche (1976) de la plage de données (1972-2010).

La pluie se répartit de la manière suivante sur une année type :

- parmi les mois d'une année normale, le mois de janvier et le mois de juin sont respectivement le mois le plus pluvieux et le mois le moins pluvieux ;
- sur les mois d'une année humide, les mois d'octobre et de septembre se distingue par un cumul mensuel d'environ 115 mm (près de 122 mm en 2001) ;
- sur les mois d'une année sèche, les mois de mars et avril sont les mois où les précipitations sont les plus faibles.

Les centiles des pluies mensuelles présentent la même répartition des pluies sur une année à savoir des pluies hivernales, i.e., des pluies plus importantes durant les mois d'hiver.

IV.2. HYDROLOGIE

IV.2.1. Données hydrologiques

IV.2.1.1. Données disponibles

Les données sont issues du réseau de la DIREN Ile-de-France, consultables sur la banque Hydro. Les stations hydrométriques doivent être suffisamment proches de la zone d'étude pour que puissent être déduits les débits de la zone d'étude à partir des débits mesurés aux stations par un simple rapport mathématique.

Les stations hydrométriques suivantes ont été retenues :

- Meilleray (code H5702010), distante de 30 km à l'amont de la zone d'étude ; elle possède des données de débits journaliers de 1996 à 2011 (16 ans) ;
- Pommeuse (code H5732010), possédant une chronique de débits depuis 1969.

Ce sont des stations de type « Station à 1 échelle »².

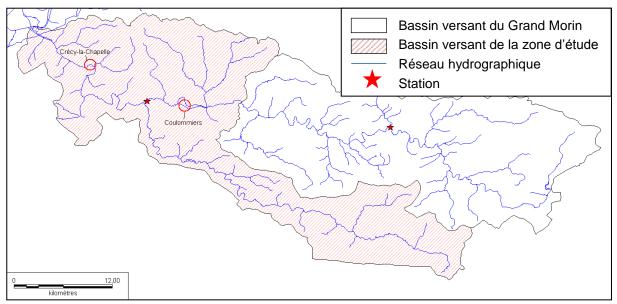


Figure 15 : Localisation des stations hydrométriques sur la zone d'étude

IV.2.1.2. Synthèse des données

a. Station de Meilleray

La station de Meilleray, de par sa localisation, permet d'estimer le débit à l'amont de la zone d'étude. Les données hydrologiques de synthèse calculées à partir des données de 1996 à 2011, fournies par la Banque Hydro, sont récapitulées dans les tableaux suivants.

Tableau 5 : Basses eaux à Meilleray (loi de Galton - janvier à décembre) - Données calculées sur 16 ans

Fréquence	VCN3 (m ³ /s)	VCN10 (m ³ /s)	QMNA (m ³ /s)
Biennale	0,780 [0,690;0,890]	0,800 [0,710;0,910]	0,860 [0,740;1,000]
Quinquennale sèche	0,630 [0,530;0,710]	0,650 [0,540;0,730]	0,660 [0,540;0,770]

² TYPE DE STATIONS :

- Station à une échelle: type le plus répandu (station où les hauteurs d'eau sont mesurées à une seule échelle hydrométrique);
- Station à 2 échelles "mère" : station à laquelle sont affectées les courbes de tarage, les jaugeages et les débits.
- Station à 2 échelles "fille" : ne comporte comme données que des hauteurs.
- Station virtuelle : station obtenue par addition ou soustraction de stations existantes.

Tableau 6 : Crues à Meilleray (loi de Gumbel - septembre à août) - Données calculées sur 13 ans

Fréquence	QJ (m3/s)	QIX (m ³ /s)
Biennale	17,00 [14,00;21,00]	20,00 [17,00;24,00]
Quinquennale	24,00 [20,00;31,00]	28,00 [24,00;37,00]
Décennale	28,00 [24,00;38,00]	34,00 [29,00;46,00]
Vicennale	33,00 [28,00;46,00]	39,00 [33,00;55,00]
Cinquantennale	Non calculé	Non calculé
Centennale	Non calculé	Non calculé

Tableau 7 : Maximums connus à Meilleray

	Maximum	Date
Hauteur maximale instantanée (cm)	336	29/12/2001 22:25
Débit instantané maximal (m³/s)	42,00	29/12/2001 22:25
Débit journalier maximal (m³/s)	33,50	30/12/2001

Avec

VCN3, le débit minimal ou débit d'étiage des cours d'eau enregistré pendant 3 jours consécutifs sur la période considérée (ici, 13 ans) ;

VCN10, le débit minimal ou débit d'étiage des cours d'eau enregistré pendant 10 jours consécutifs sur la période considérée ;

QMNA, le débit moyen mensuel sec ou débit mensuel minimal calculé sur toute la période d'observation ;

QJ, le débit moyen journalier maximal sur une période donnée ;

QIX, le débit instantané maximal sur une période donnée.

Les valeurs entre crochets représentent les bornes de l'intervalle de confiance dans lequel la valeur exacte du paramètre estimé à 95 % de chance de se trouver.

Le tableau suivant présente les débits moyens observés sur la station de Meilleray.

Tableau 8 : Ecoulements mensuels à Meilleray (naturels) - Données calculées sur 16 ans

Mois	janv.	févr.	mars.	avr.	mai	juin	juil.	août	sept.	oct.	nov.	déc.	Module (moyenne)
Q (m ³ /s)	3,12	3,49	2,72	2,28	1,52	1,15	1,04	0,99	0,95	1,34	1,73	2,94	1,93

Le module du Grand Morin à Meilleray s'établit à 1,93 m³/s [1,450;2,400].

b. Station de Pommeuse

Sur la station de Pommeuse, au cœur de la zone d'étude, les données hydrologiques de synthèse calculées à partir des données de 1969 à 2011 sont fournies par la Banque Hydro. Ces résultats sont récapitulés dans les tableaux suivants.

<u>Tableau 9 : Basses eaux à Pommeuse (loi de Galton - janvier à décembre) - Données calculées sur 43</u>
<u>ans</u>

Fréquence	VCN3 (m ³ /s)	VCN10 (m ³ /s)	QMNA (m ³ /s)
Biennale	2,200 [2,100;2,400]	2,300 [2,200;2,400]	2,500 [2,400;2,700]
Quinquennale sèche	1,900 [1,700;2,000]	1,900 [1,800;2,000]	2,100 [1,900;2,200]

Tableau 10 : Crues à Pommeuse (loi de Gumbel - septembre à août) - Données calculées sur 42 ans

Fréquence	QJ (m ³ /s)	QIX (m ³ /s)			
Biennale	44,00 [40,00;49,00]	52,00 [48,00;58,00]			
Quinquennale	64,00 [58,00;73,00]	75,00 [68,00;86,00]			
Décennale	77,00 [69,00;90,00]	90,00 [81,00;110,0]			
Vicennale	90,00 [80,00;110,0]	100,0 [94,00;120,0]			
Cinquantennale	110,0 [94,00;130,0]	120,0 [110,0;150,0]			
Centennale	Non calculé	Non calculé			

Tableau 11: Maximums connus à Pommeuse

	Maximum	Date
Hauteur maximale instantanée (cm)	301	06/12/1988 07:00
Débit instantané maximal (m³/s)	98,00	06/12/1988 07:00
Débit journalier maximal (m³/s)	88,90	06/12/1988

Avec:

VCN3, le débit minimal ou débit d'étiage des cours d'eau enregistré pendant 3 jours consécutifs sur la période considérée (ici, 13 ans) :

VCN10, le débit minimal ou débit d'étiage des cours d'eau enregistré pendant 10 jours consécutifs sur la période considérée ;

QMNA, le débit moyen mensuel sec ou débit mensuel minimal calculé sur toute la période d'observation ;

QJ, le débit moyen journalier maximal sur une période donnée ;

QIX, le débit instantané maximal sur une période donnée.

Les valeurs entre crochets représentent les bornes de l'intervalle de confiance dans lequel la valeur exacte du paramètre estimé à 95 % de chance de se trouver.

Le tableau suivant présente les débits moyens observés sur la station de Pommeuse.

Tableau 12 : Ecoulements mensuels à Pommeuse (naturels) - Données calculées sur 43 ans

Mois	janv	févr.	mars.	avr.	mai	juin	juil.	août	sept.	oct.	nov.	déc.	Module (moyenne)
Q (m ³ /	8,82	9,46	8,17	6,36	4,39	3,62	3,58	2,96	2,87	3,85	4,27	7,68	5,48

Le module du Grand Morin à Pommeuse s'établit à 5,48 m³/s [4,990 ; 5,980].

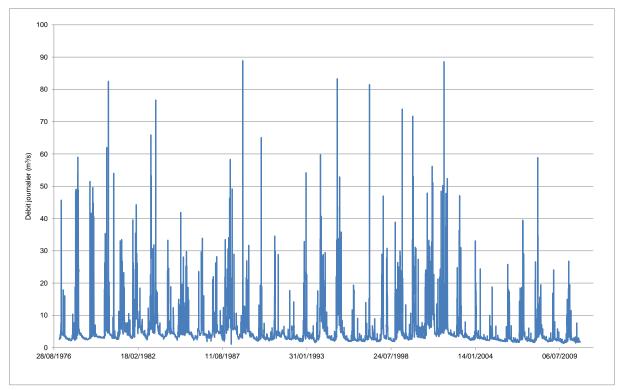


Figure 16 : Evolution des débits moyens journaliers du Grand Morin à Pommeuse

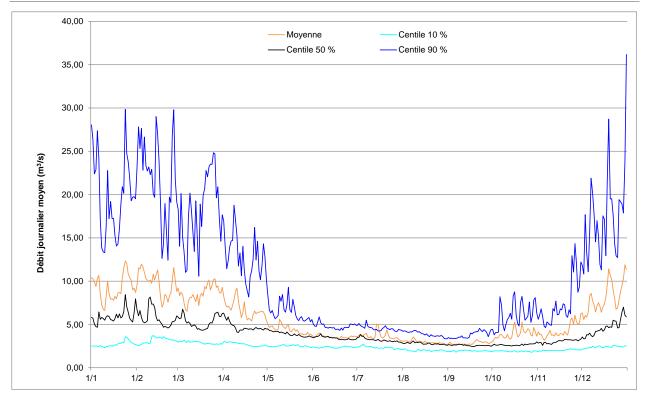


Figure 17 : Débits moyens journaliers du Grand Morin à Pommeuse

En résumé :

- la station de Meilleray, située à l'amont de la zone d'étude, est utilisée pour connaître l'hydrologie du Grand Morin amont;
- la station de débit utilisée sur la zone d'étude est celle de Pommeuse, située à quelques kilomètres en aval de Coulommiers, qui dispose de données sur une période longue de 43 ans;
- le débit moyen, ou module, du Grand Morin sur la station de Pommeuse est de 5,48 m³/s;
- le débit d'étiage s'y établit à 2,1 m³/s ;
- le débit maximum ayant été enregistré à cette station est de 98 m³/s (pointe de crue), le 06 décembre 1988 à 07h00.

IV.2.2. Inondations

IV.2.2.1. Gestion des ouvrages

Dans l'ensemble, les propriétaires ou les gestionnaires des ouvrages respectent le maintien de la cote d'eau réglementaire. En cas de crue (voir ci-dessous), les manipulations coordonnées par le Syndicat se déroulent dans de bonnes conditions. A noter que certains ouvrages vétustes (radier de vanne dégradé, déversoir fuyard, etc.) ne peuvent plus tenir leur cote réglementaire, entraînant parfois des conséquences négatives sur les ouvrages amont.

a. Points particuliers

> Dérivation de coulommiers

Creusée au début du XVIIème siècle pour évacuer les eaux (en contournant la ville), la Fausse Rivière de Coulommiers divise le cours d'eau en deux systèmes quasi indépendants au niveau de Pontmoulin. En effet, des batardeaux (0,8 à 1 m) installés sur le bras principal, pendant les périodes de hautes eaux, permettent de contrôler le niveau d'eau amont de sorte à alimenter le déversoir d'orage de Pontmoulin et ainsi de diriger une partie de débit vers la dérivation et jouer le rôle de bassin de rétention.

Aucune manipulation n'est réalisée sur les ouvrages de Coulommiers (moulin de l'Arche, moulin des Prés et vannages des brassets).

Figure 18 : Localisation des ouvrages de la Fausse Rivière

Pouvant accueillir jusqu'à 2/3 du débit (près de 2,9 m de tirant d'eau en crue), la capacité de la Fausse Rivière sert ainsi à retenir un grand volume d'eau et joue le rôle de bassin de retenue. Lorsque le volume stocké atteint son maximum, les services techniques de Coulommiers agissent sur le clapet de la Sucrerie, l'onde de crue arrivant à Crécy-la-Chapelle dans un délai estimé de 5 à 6 heures.

> Brassets de Crécy-la-Chapelle

Les brassets de Crécy-la-Chapelle comportent 3 vannages qui permettent de gérer les débits. A ceux-ci s'ajoute le moulin du Faubourg.

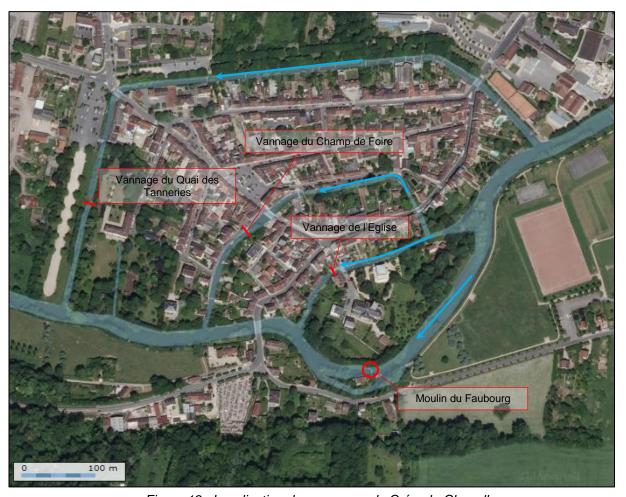


Figure 19 : Localisation des ouvrages de Crécy-la-Chapelle

En cas de crue du Grand Morin, les vannages internes à Crécy-la-Chapelle sont ouverts selon l'ordre suivant :

- vannage de l'Eglise;
- vannage Quai des Tanneries;
- vannage du Champ de Foire;
- vannage du moulin du Faubourg.

Leur fermeture s'opérant dans le sens inverse pour la cohérence de l'action.

Confluence avec la Marne

La confluence du Grand Morin avec la Marne est particulière. En effet, à la fin du XIXème siècle, un nouveau bras, créé à Condé-Sainte-Libiaire, se substitue à l'ancien cours moins direct qui se situe à Esbly. Ce bras complémentaire prend naissance au niveau de la Porte à bateaux et conflue avec la Marne après passage du Morin sous un large pont, aux nombreuses et massives arches, qui porte le canal de Chalifert (canal destiné à raccourcir le temps de navigation sur la Marne). Lors de crues, ce pont-canal (et les branches et troncs accumulés sous les arches) freine l'écoulement du Grand Morin dans la Marne. De plus, le niveau est bien souvent contraint par celui de la Marne, en crue elle aussi, et qui empêche la rivière de libérer ses eaux. En conséquence, le Grand Morin déborde sur les secteurs les communes les plus à l'aval (Couilly-Pont-aux-Dames, Saint-Germain-sur-Morin, Montry, Esbly, etc.).

Des travaux d'envergure ont été entrepris en 1984 : la construction de quatre « épis » dans le lit du Grand Morin induisant une bonne direction au courant. Deux autres épis devaient être construits dans la Marne pour parfaire cette pénétration de la rivière mais cette tranche de travaux n'a jamais été effectuée. De ce fait, un envasement très important au niveau de l'embouchure, à l'aval du pont canal de Condé-Sainte-Libiaire, freine l'écoulement de l'eau dans la Marne.

De 1846 jusqu'à la fin des années trente, le Grand Morin alimentait également le canal de Chalifert au niveau de Saint-Germain-sur-Morin. En effet, les vestiges d'une ancienne écluse sont visibles. A l'heure actuelle, l'écluse est comblée et n'est plus fonctionnelle. Le bras alimentaire du canal de Chalifert, déconnecté du Grand Morin, est un long canal rectiligne alimenté par l'aval. La masse d'eau est stagnante et envahit par les lentilles d'eau et une espèce invasive, l'élodée du Canada.

b. Système d'alerte

Le rôle primordial du Syndicat est de lutter contre les inondations. Pour ce faire, nous avons mis en place une procédure qui consiste à faire lever les vannes des ouvrages qui habituellement servent à maintenir un certain niveau d'eau dans la rivière. Ce processus permet d'évacuer rapidement vers la Marne le trop-plein. Le contact entre les différents gestionnaires (Syndicat du Haut Morin, Syndicat Intercommunal d'Études et de Travaux pour l'Aménagement du Bassin du Grand Morin, ville de Coulommiers, etc.) est établi en permanence.

Sur le Grand Morin, trois balises d'annonce de crues situées à Chatillon sur Morin, Meilleray et Mouroux afin de détecter la montée des eaux lorsqu'il y a de fortes pluies ou des orages. La cloche du sonar de la balise de Mouroux est à peu près au niveau 2 m. (0,75 m en période d'étiage). Les niveaux d'alertes enregistrés par rapport au niveau 2 m doivent être :

Niveau d'alerte	Niveau (m)
N0	2
N1E1	1,70
N2E2	1,50
N3E3	1,40
N4E4	1,10

Tableau 13 : Niveau d'alerte sur la balise de Mouroux

Ces balises sont reliées à une société de télésurveillance (surveillance par téléphone) qui alerte (à n'importe quelle heure du jour et de la nuit), au cas où l'une ou l'autre des balises sonne, un responsable (M. Houel, Président du Syndicat ou Mme Ravet, Vice-Présidente du Syndicat) car il y a obligation de résultat. La personne prévenue fait alors lever tous les vannages de l'aval vers l'amont. Cette action se fait en coordination avec les services techniques de Coulommiers qui gèrent la Fausse Rivière, jouant le rôle de bassin de rétention. L'onde de crue de Coulommiers atteint Crécy-la-Chapelle dans un délai estimé de 5 à 6 heures. L'information de l'ouverture des vannes des brassets est relayée aux villes situées en aval, pour coordonner la même ouverture des ouvrages dont elles assurent la gestion.

La fermeture des vannes est déclenchée lorsque le niveau et le débit de ces rivières redeviennent normaux et que les épisodes pluvieux ont cessé depuis au moins 48 heures. Dans la zone de la confluence avec la Marne, les vannes sont fermées au bout de 48 heures afin de limiter la remontée des eaux de la Marne dans le Grand Morin.

Ce système donne satisfaction depuis plusieurs années mais nous ne perdons pas de vue que le Grand Morin se conduit comme un torrent et qu'une catastrophe est toujours possible. Donc, pour parfaire cette organisation, nous mettons en place un système d'alerte (système CEDRALIS) avertissant les riverains exposés. Un fichier téléphonique a été élaboré et toutes les personnes susceptibles d'être inondées seront contactées par téléphone et recevront un message leur conseillant de prendre les précautions nécessaires (ce message peut toucher environ 1800 personnes en moins de dix minutes). Lorsque le niveau d'alerte 1 est atteint, le

personnel du centre appelle M. Houel ou Mme Ravet pour signaler que ce premier niveau est atteint. En fonction des conditions météorologiques et de la surveillance visuelle, M. Houel ou Mme Ravet engagent alors une surveillance attentive. Dès que le centre signale par téléphone que le niveau 2 est atteint, ils décident de déclencher le premier niveau d'appel (appel à CEDRALIS ou connexion sur Internet). Il est possible de suivre, sur Internet, Le suivi de la progression des appels (et des ré-appels si le premier message n'a pas été confirmé) est possible en temps réel. En cas de montée supplémentaire des eaux, le centre d'appel signale que le niveau 3 est atteint et le 2ème message via CEDRALIS est lancé, informant les riverains de la crue.

IV.2.2.2. Arrêtés

Les principaux arrêtés de catastrophe naturelle, recensés dans la base de données GASPAR, sont donnés dans le tableau suivant, pour les 17 communes de la zone d'étude situées sur le cours du Grand Morin.

		.,		
Risque	Date début	Date fin	Date arrêté	Communes
Inondation et coulées de boue	08/12/1982	31/12/1982	11/01/1983	15 communes (exception faite de Dammartin-sur- Tigeaux et Tigeaux)
Inondation et coulées de boue	08/04/1983	10/04/1983	16/05/1983	17 communes
Inondation et coulées de boue	20/05/1986	20/05/1986	17/10/1986	Boissy-le-Châtel, Coulommiers, Mouroux, Pommeuse, Guérard, Tigeaux, Crécy-la- Chapelle, Voulangis et Villiers-sur-Morin
Inondation et coulées de boue	05/12/1988	06/12/1988	22/02/1989	14 communes (exception faite de Chailly-en- Brie, Montry et Esbly)
Inondation et coulées de boue	19/12/1993	15/01/1994	12/04/1994	Cuérard, Crécy-la-Chapelle, Villiers-sur-Morin, Couilly-Pont-aux-Dames, Saint-Germain-sur- Morin et Condé-Ste-Libiaire
Inondation et coulées de boue	17/01/1995	31/01/1995	06/02/1995	16 communes (exception faite de Dammartin-sur- Tigeaux)
Inondation et coulées de boue	24/04/1995	25/04/1995	18/08/1995	Coulommiers, Mouroux, Pommeuse, Guérard, Tigeaux, Crécy-la-Chapelle, Voulangis, Villiers- sur-Morin et Saint-Germain-sur-Morin
Inondations, coulées de boue et mouvements de terrain	25/12/1999	29/12/1999	29/12/1999	17 communes
Inondation et coulées de boue	29/12/2001	31/12/2001	30/04/2002	Mouroux, Pommeuse, Guérard, Tigeaux, Crécy- la-Chapelle, Voulangis et Villiers-sur-Morin

Tableau 14 : Recensement des principaux arrêtés de catastrophe naturelle « Inondation »

IV.2.2.3. PPRI

Les Plans de Prévention du Risque Inondation (PPRI), établis par l'état, permettent de contrôler, au titre du risque inondation, le développement en zone inondable jusqu'au niveau de la crue de référence et la préservation des champs d'expansion des crues.

Toutes les communes de la zone d'étude sont concernées par un Plan de Prévention des Risques d'Inondation, à savoir :

- PPRI prescrit par arrêté préfectoral le 28/01/2005 et approuvé le 29/12/2010 pour les communes entre Chauffry et Dammartin-sur-Tigeaux;
- PPRI prescrit par arrêté préfectoral le 28/01/2005 et approuvé le 10/11/2006 pour Tigeaux, Crécy-la-Chapelle, Voulangis, Villiers-sur-Morin, Coutevroult, Couilly-Pontaux-Dames et Saint-germain-sur-Morin.

Les trois communes au niveau de la confluence avec la Marne (Montry, Conde-Sainte-Libiaire et Esbly) sont concernées par le PPRI de la Marne, prescrit le 03/08/2001 et approuvé le 27/1/2009.

Le zonage règlementaire du PPRI est consultable par commune, dans le cadre de l'information pour les acquéreurs et les locataires sur les risques majeurs. Il y est présenté la carte des aléas, pour une crue « type 1988 », y compris des cotes en m NGF issues d'une modélisation.

IV.2.2.4. Crues historiques

L'ouvrage de M. Bazin, *Etudes sur la rivière et la vallée du Grand Morin*, témoigne de crues historiques du Grand Morin :

On cite au XVIII^e siècle de graves inondations ; en 1703-1704 elles emportèrent à deux reprises différentes le pont Dame-Gilles à Crécy. En 1787, les eaux détruisent le pont de la Ferté-Gaucher. On peut signaler encore parmi les inondations les plus importantes du Grand-Morin celles de 1853, de 1859-1860 ; de 1860-1861, de 1866, de 1876, de 1881, de 1882-1883, de 1899. Toutes ont causé des désastres considérables et ont eu pour les habitants des villes des suites désagréables en rendant les habitations humides par le séjour prolongé des eaux et de dépôts limoneux qu'elles y ont laissés.

Par ailleurs, il est fait mention dans le PPRI que le sous-préfet de Coulommiers écrit au préfet le 14 nivôse de l'an X (4 janvier 1802) à propos d'une crue à la Ferté Gaucher (Maurice Champion, *Les inondations en France du VIe siècle à nos jours*, (tome deuxième, Paris, Cemagref, 2000, chapitre XI, pp. 155-156)) :

Des maisons ont été entraînées par la violence des eaux. La crue a été si rapide et si violente, qu'il a été impossible de prendre aucune précaution pour s'en garantir. Plusieurs moulins ont été également brisés et emportés. L'étang qui alimente la rivière du Morin a rompu ses digues et la chaussée est crevée.

Quelques débordements historiques sont également rappelés avec les crues du 25 février 1958 et 30 mars 1962. Enfin, la crue de 1988, avec un débit de 98 m³/s enregistré à Pommeuse, reste le dernier évènement majeur sur le Grand Morin.

IV.2.2.5. Cartographie des zones inondables

Les limites, issues des PPRI, des secteurs inondés sur la zone d'étude ont été reportées sur les figures page suivante. Elles pourront être comparées aux zones de débordement générées lors des simulations du modèle hydraulique de l'étude.

Dans les phénomènes d'inondation, les remontées de nappes sont également en cause. Sur le secteur d'étude, la nappe est cartographiée comme sub-affleurante, principalement sur le secteur amont, entre Coulommiers et Pommeuse, et en aval entre Dammartin-sur-Tigeaux et Crécy-la-Chapelle.

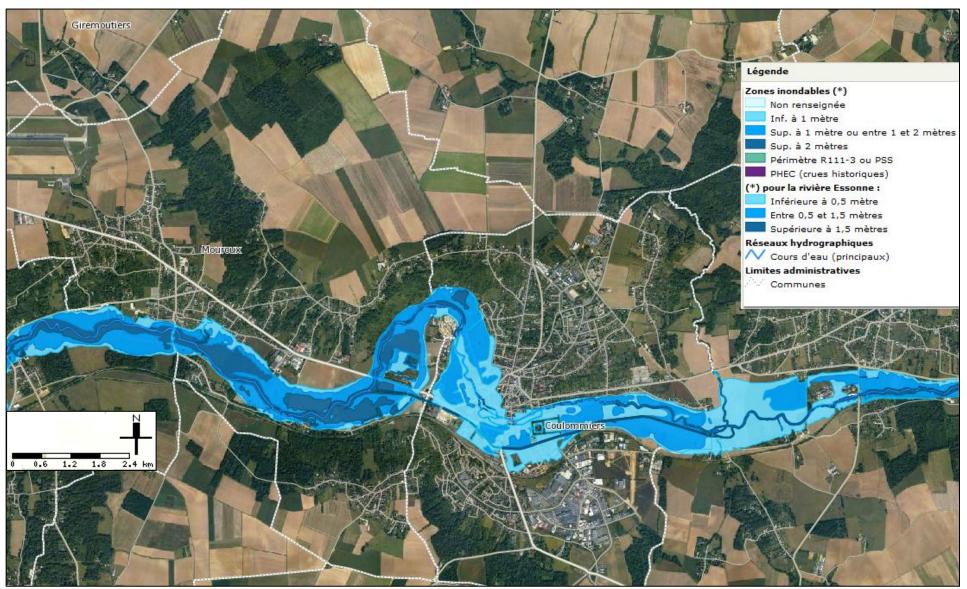


Figure 20 : Extrait 1 de l'Atlas des zones inondables du Grand Morin (source : IAU Île-de-France)

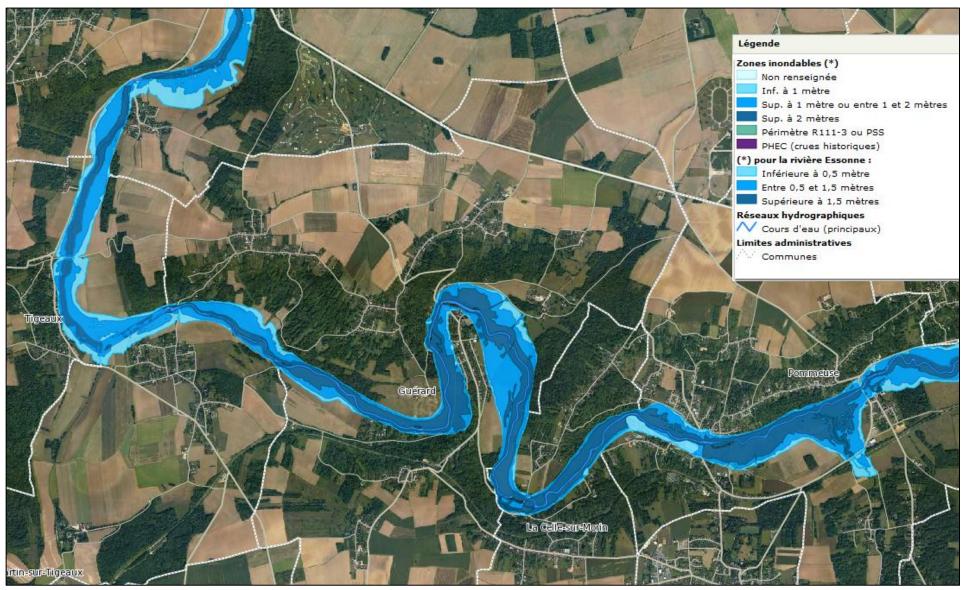


Figure 21 : Extrait 2 de l'Atlas des zones inondables du Grand Morin (source : IAU Île-de-France)

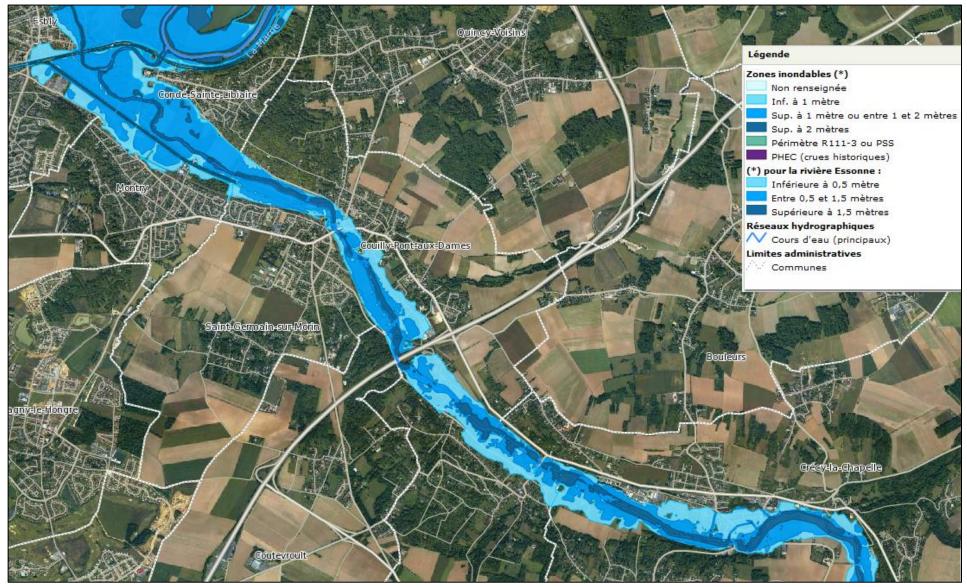


Figure 22 : Extrait 3 de l'Atlas des zones inondables du Grand Morin (source : IAU Île-de-France)

IV.2.3. Caractéristiques des bassins versants

IV.2.3.1. Généralités

L'un des objectifs de l'hydrologie est l'étude des écoulements à différentes échelles d'espace et de temps, en des points donnés des cours d'eau. L'entité géographique de base pour l'étude des écoulements est le bassin versant (BV).

Un bassin versant, ou bassin hydrographique, est une portion de territoire délimitée par des lignes de crête, dont les eaux alimentent un exutoire commun. La ligne séparant deux bassins versants adjacents est une ligne de partage des eaux. Chaque bassin versant se subdivise en un certain nombre de sous bassins versants correspondant à la surface d'alimentation des affluents se jetant dans le cours d'eau principal.

Chaque bassin versant se caractérise par différents paramètres géométriques (surface, pente), pédologiques (nature et capacité d'infiltration des sols), urbanistiques (présence de bâti) mais aussi biologiques (type et répartition de la couverture végétale).

Le bassin versant (BV) en une section S d'un cours d'eau est défini comme l'aire A drainée par ce cours d'eau et ses affluents en amont de la section considérée.

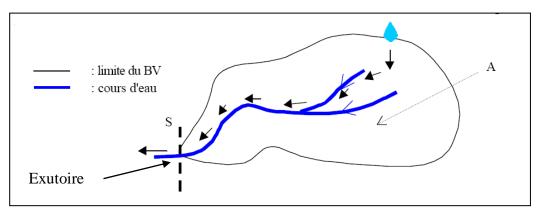


Figure 23: Bassin versant type

Si le sous-sol est plutôt imperméable, le cheminement de l'eau sera surtout déterminé par la topographie puisque la majorité des écoulements se déroulera en surface. Dans ce cas, c'est la topographie qui délimite le BV. Le bassin versant topographique est déterminé en partant de l'exutoire et en suivant les lignes de crêtes et les points hauts jusqu'à revenir au point de départ.

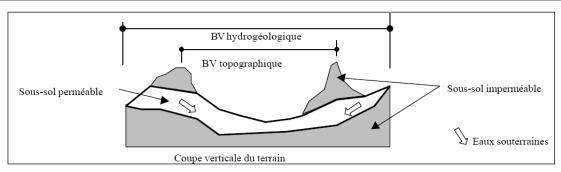


Figure 24 : Bassin versant topographique et bassin versant hydrogéologique

Lorsque le sous-sol est plutôt perméable, il existe des écoulements souterrains :

- une partie des eaux de pluie s'infiltre et quitte le bassin versant (topographique) par le sous-sol,
- des eaux souterraines arrivent dans le bassin versant (topographique) par le sous-sol.

Dans ce cas, le bassin versant est délimité par la nature du sous-sol. Le bassin versant est dit hydrogéologique.

IV.2.3.2. Caractéristiques géométriques des sous-bassins

L'étude des cartes IGN au 1/25000ème a permis de délimiter le bassin versant topographique et ses sous-bassins versants. La zone d'étude présente plusieurs bassins résiduels : bassins compris entre deux confluences successives. Comme présenté sur la figure ci-dessous, les bassins résiduels sont à étudier en considérant le ou les bassins versants en amont. Ainsi, la surface et la longueur du cours d'eau sont cumulées d'amont en aval. Les principaux affluents (Orgeval, Liéton, Aubetin, Vaudessard et Mesnil) ont également été étudiés au cas par cas.

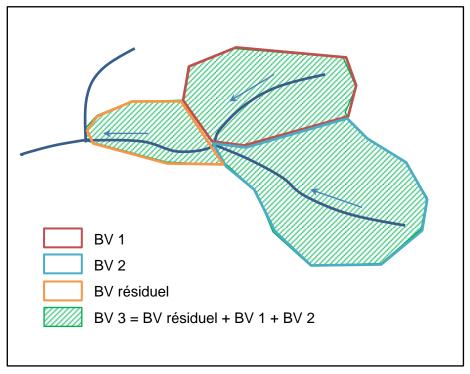


Figure 25 : Situation d'un bassin versant résiduel

La localisation du bassin versant général du Grand Morin et la délimitation des sous-bassins versants de la zone d'étude sont présentées sur la figure ci-après.

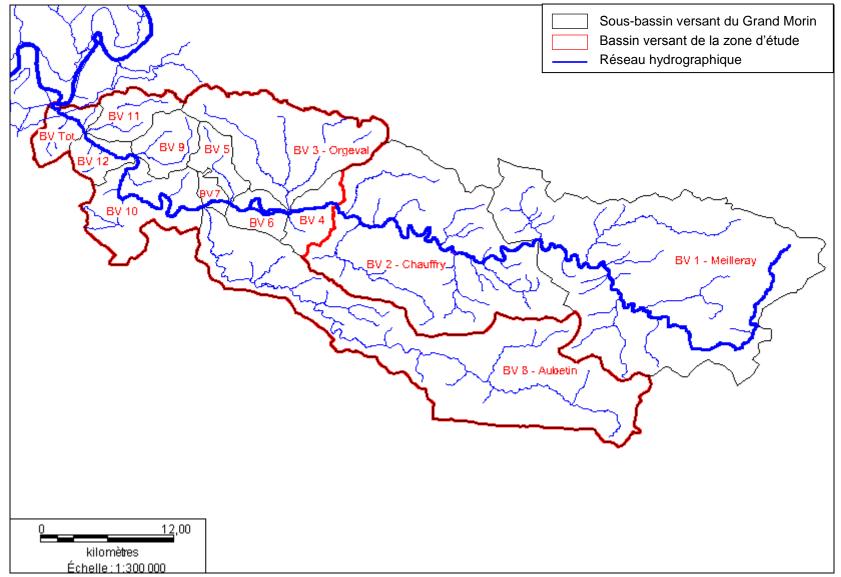


Figure 26: Localisation des sous-bassins versants du Grand Morin

Les résultats de ce découpage en sous bassins versants donnent les indications suivantes, d'amont en aval :

Tableau 15 : Caractéristiques des sous bassins versants du Grand Morin

Bassin versant	Surface BV	Périmètre BV	Longueur cours d'eau	Zamont	Zaval	Pente	Point Kilométrique /confluence
	km²	km	km	m NGF	m NGF	m/m	km
BV1 : Meilleray	349	104	44	190	130	0,001	74
BV 2 : Chauffry	594	144	74	190	100	0,001	44
BV 3 : Orgeval	107	53	18	166	65	0,006	39
BV 4 : Pontmoulin	725	176	79	190	65	0,002	39
BV 5 : Liéton	19	24	9	153	62	0,010	32
BV 6 : Mouroux	762	181	86	190	62	0,001	32
BV 7 : Pommeuse	769	180	89	190	59	0,001	29
BV 8 : Aubetin	269	116	61	180	59	0,002	29
BV 9 : Vaudessard	26	21	10	138	48	0,009	11
BV 10 : Crécy-la- Chapelle	1128	210	106	190	48	0,001	11
BV 11 : Mesnil	26	24	9	136	45	0,010	5
BV 12 : Couilly- Pont-aux-Dames	1171	218	113	190	45	0,001	5
BV _{total} : Porte à bateaux	1191	227	118	190	40	0,001	0

IV.2.3.3. Temps caractéristique

Les bassins versants peuvent être caractérisés par leur forme, celle-ci pouvant influencer l'hydrogramme de crue à l'exutoire. Par exemple une forme allongée (BV2 de la figure cidessous) favorise de faibles débits de pointe de crue, ceci en raison du temps d'acheminement de l'eau à l'exutoire, appelé temps de concentration, plus important. En revanche, les bassins en forme d'éventail (BV1, figure ci-dessous), présentant un temps de concentration plus court, auront de plus forts débits de pointe pour une même pluie.

Il existe différents indices morphologiques permettant de caractériser le milieu, mais aussi de comparer les bassins versants entre eux.

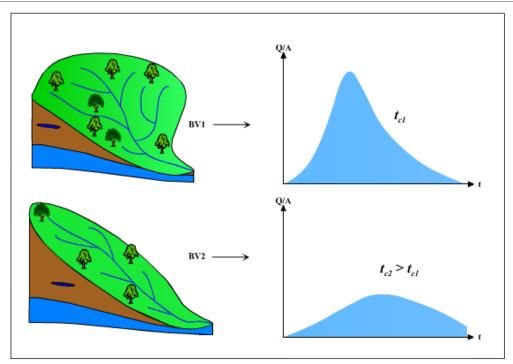


Figure 27 : Relation entre la forme du BV et les débits de pointes en crue

<u>Le temps de concentration</u> des eaux sur un bassin versant se définit comme le maximum de durée nécessaire à une goutte d'eau pour parcourir le plus long chemin hydrologique pour atteindre l'exutoire. Il renseigne sur la vitesse de propagation de l'eau sur le bassin versant.

Pour calculer les temps de concentration, T_c , des différents BV, nous avons choisi la méthode de Passini.

Les résultats de l'étude de ces indicateurs appliqués à la zone d'étude sont présentés dans le tableau ci-après.

Tableau 16: Temps de concentration des sous bassins versants du Grand Morin

Bassin versant	Surface BV	Pente	Temps de concentration
	km²	m/m	Heure
BV1 : Meilleray	349	0,001	73
BV 2 : Chauffry	594	0,001	109
BV 3 : Orgeval	107	0,006	18
BV 4 : Pontmoulin	725	0,002	104
BV 5 : La Liéton	19	0,010	6
BV 6 : Mouroux	762	0,001	113
BV 7 : Pommeuse	769	0,001	115
BV 8 : Aubetin	269	0,002	62
BV 9 : Vaudessard	26	0,009	7
BV 10 : Crécy-la-Chapelle	1128	0,001	145
BV 11 : Mesnil	26	0,010	7
BV 12 : Couilly-Pont-aux-Dames	1171	0,001	154
BV _{total} : Porte à bateaux	1191	0,001	157

Le temps de concentration du bassin versant à la confluence est de 157 h, et le délai entre Chauffry et Esbly est de 2 jours (48 h).

IV.2.4. Calcul des débits de pointe théoriques

Les calculs hydrologiques présentés ci-après utilisent des méthodes classiques, sur la base de l'étude des bassins versants topographiques, et des débits connus en différentes station sur le Grand Morin : Pommeuse et Meilleray. La composante nappe est supposée être homogène sur l'ensemble du bassin.

IV.2.4.1. Estimation des débits de période de retour 2, 5 et 10 ans par les méthodes Crupédix et Myer

a. Débits biennal et quinquennal par la formule de Myer

Ces débits ont été évalués par la formule de Myer, qui fait appel aux caractéristiques des cours d'eau jaugés se trouvant à proximité de la zone d'étude et dont les caractéristiques sont proches de celles de la zone d'étude. Dans le cas présent, on utilisera les données des stations de Meilleray et Pommeuse.

Le débit recherché s'exprime par :

 $Q_b = Q_a \times (S_b/S_a)^{0.8}$

Avec:

Q_b : le débit « zone d'étude » recherché, pour la fréquence de retour souhaitée (m3/s) ;

S_b : la superficie du bassin versant considéré (km²) ;

Q_a, S_a : le débit fréquence souhaitée (m3/s) et la superficie (km²) de la station de jaugeage pour laquelle les valeurs sont disponibles.

Les bassins versants du Grand Morin à Meilleray, Pommeuse et au niveau de la confluence ont été comparés et les coefficients de ruissellement ont été calculés à partir des données de couverture du sol Corine Land Cover 2006 présentées sur la planche page suivante. Les caractéristiques des affluents ont également été étudiées.

Mis à part les bassins versant des affluents rive droite du Grand Morin, les bassins versants possèdent des caractéristiques morphologiques relativement proches. La formule de Myer est donc applicable.

Tableau 17 : Comparaison des caractéristiques des bassins versants du Grand Morin

Bassin versant	Surface (km²)	Perimètre (km)	Longueur (km)	Z amont (m NGF)	Zaval (m NGF)	Pente	Coefficient de ruissellement
BV 1 : Meilleray	349	104	44	190	130	0,001	0,57
BV 3 : Orgeval	107	53	18	166	65	0,006	0,57
BV 5 : Liéton	19	24	9	153	62	0,010	0,59
BV 7 : Pommeuse	769	180	89	190	59	0,001	0,61
BV 9: Vaudessard	26	21	10	138	48	0,009	0,56
BV 11 : Mesnil	26	24	9	136	45	0,010	0,54
BV 13 : Porte à bateaux	1191	227	118	190	40	0,001	0,61

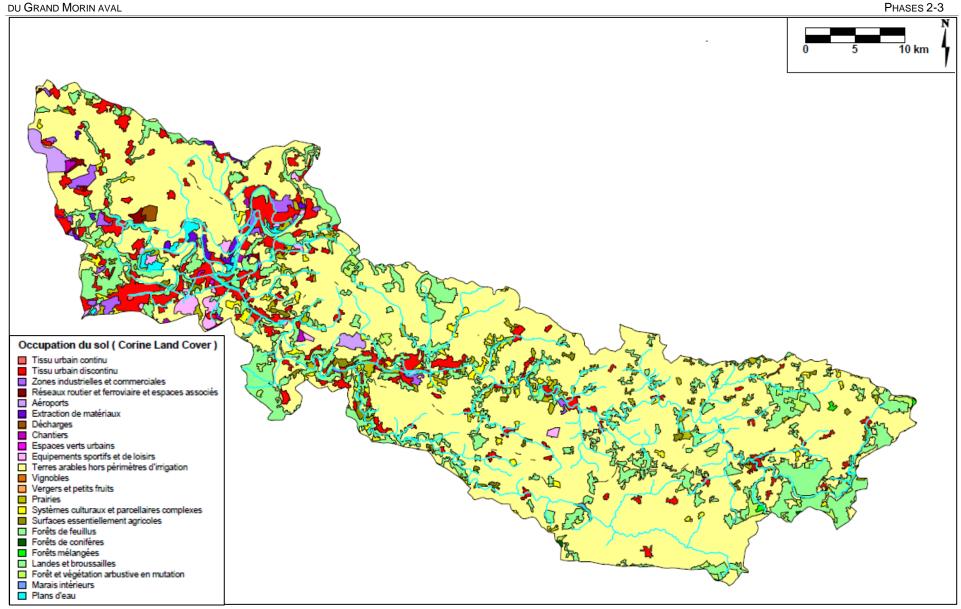


Figure 28 : Couverture de sol Corine Land Cover 2006 des BV du Grand Morin

<u>Tableau 18 : Débits biennal et quinquennal instantanés calculés pour les bassins versants du Grand</u>
<u>Morin</u>

Bassin versant	QIX ₂	(m ³ /s)	QIX ₅ (m ³ /s)		Superficie (km²)
Dassiii versaiit	Station	Myer	QIX	Myer	Superficie (kili-)
BV 1 : Meilleray	20	20	28	28	349
BV 2 : Chauffry	ı	30,6	-	42,8	594
BV 3 : Orgeval	ı	-	-	-	107
BV 4 : Pontmoulin	ı	35,9	-	50,3	725
BV 5 : Liéton	ı	-	-	-	19
BV 6 : Mouroux	ı	56,6	-	71,5	762
BV 7 : Pommeuse	57	57	72	72	769
BV 8 : Aubetin	ı	24,6	-	31,1	269
BV 9 : Vaudessard	ı	-	-	-	26
BV 10 : Crécy-la-Chapelle	ı	77,4	-	97,8	1128
BV 11 : Mesnil		-	-	-	26
BV 12 : Couilly-Pont-aux-Dame:		79,8	-	100,8	1171
BV 13 : Porte à bateaux	-	80,9	-	102,2	1191

b. Débit décennal par la méthode Crupédix

La méthode CRUPEDIX (1980-1982) permet l'estimation du débit de pointe décennal (Qi10)³. La formulation ci-après a été obtenue par une analyse statistique de 630 bassins versants de moins de 2000 km².

La méthode Crupédix utilise un modèle simple de transformation de la pluie en débit :

$$Q10 = R \times S^b \left(\frac{P10}{80}\right)^2$$

Avec :

Q10 : le débit de pointe décennal en m3/s; S : la surface du bassin versant en km²; Pj10 : la pluie journalière décennale en mm;

R : le coefficient régional.

La valeur retenue pour la pluie journalière décennale est issue des mesures effectuées par le CEMAGREF sur le site expérimental de l'Orgeval. Cette valeur est fournie par Cedra Développement dans l'étude pour l'aménagement des bassins versants et affluents du Grand Morin : P_{j10} = 49 mm.

Cette étude présente également les débits des crues décennales sur les bassins versants des affluents rive droite du Grand Morin sur la zone d'étude.

³ <u>Remarque</u>: Rappelons que la période de retour T d'un événement est définie comme étant l'inverse de la fréquence d'apparition de l'événement. Par exemple, une période de retour de 10 ans signifie que l'évènement étudié se produit statistiquement 1 fois tous les 10 ans.

Tableau 19 : Débits décennaux instantanés calculés pour le bassin versant total du Grand Morin

Bassin versant	QIX ₁₀ (m ³ /s)					
Bassiii versaiit	Crupédix	Station	Crupédix ajusté	Myer		
BV 1 : Meilleray	36,5	34	34	34		
BV 2 : Chauffry	55,9	-	52	52		
BV 3 : Orgeval	17,3	23	23	-		
BV 4 : Pontmoulin	65,6	-	61	61		
BV 5 : Liéton	3,5	7	7,4	-		
BV 6 : Mouroux	68,2	-	81,2	82,6		
BV 7 : Pommeuse	68,7	82	82	82		
BV 8 : Aubetin	29,7	-	35,3	-		
BV 9 : Vaudessard	4,3	12	12	-		
BV 10 : Crécy-la-Chapelle	93,4	-	111,1	111,4		
BV 11 : Mesnil	5,5	11	11	-		
BV 12 : Couilly-Pont-aux-Dames	96,2	-	114,5	114,8		
BV 13 : Porte à bateaux	97,5	-	116,1	116,4		

Avec:

Q₁₀ Crupédix ajusté = Q₁₀ Crupédix X (Q₁₀ Banque Hydro (Station)/ Q₁₀ Crupédix (Station))

Les données relevées aux stations de jaugeage du Grand Morin à Meilleray et Pommeuse permettent d'évaluer la qualité des valeurs calculées par la méthode Crupédix et ainsi de calculer un coefficient d'ajustement γ :

$$m m{\gamma} = Q_{10~Banque~Hydro} / Q_{10~Crupédix}$$

Ce coefficient γ est ensuite appliqué au Q_{10} calculé sur les autres bassins versants par la méthode Crupédix afin de l'ajuster de la même façon.

Il est à remarquer que les méthodes Crupédix ajusté et Myer donnent des valeurs de débits similaires.

IV.2.4.2. Estimation des débits de période de retour 20, 50 et 100 ans par la méthode du Gradex

La méthode du Gradex part du principe que :

- la hauteur de pluie maximale sur un intervalle de temps dt, au cours d'une année, suit une loi de Gumbel (hypothèse probabiliste) ;
- pour les périodes de retour élevées (supérieures à 10 voire 20 ans), le bassin versant est supposé saturé, ce qui a pour conséquence que toute augmentation de la quantité de pluie provoque une augmentation égale de l'écoulement (hypothèse déterministe).

La durée de pluie à prendre en compte pour l'application de la méthode sur le bassin versant du Grand Morin est égale à la durée caractéristique de crue du bassin versant (formulation Socose, correspond à la durée pendant laquelle la moitié du débit de point est dépassé). Le Gradex des pluies, donné par l'étude de Cedra Développement, est calculé en différents points du bassin versant.

Le Gradex des débits peut alors être calculé en appliquant la formule suivante :

$$G_{Q} = \frac{G_{P} \times S}{3.6 \times D}$$

Avec:

G_p : Gradex des pluies de durée D, en mm ;

G_Q: Gradex des débits en m³/s;

S : superficie du bassin versant considéré, en km²;
D : durée caractéristique de l'hydrogramme de crue, en h.

La méthode du Gradex s'applique ensuite au débit moyen sur la durée de crue considérée (méthode non adaptée aux débits de pointe) en appliquant la formule :

$$Q_{MT_2} = Q_{MT_1} + G_Q \times Ln \left(\frac{Ln\left(1 - \frac{1}{T_1}\right)}{Ln\left(1 - \frac{1}{T_2}\right)} \right)$$

Avec:

T₁: période de retour de référence, égale à 10ans ;

T₂: période de retour de calcul (20, 50 et 100), en années ;

G_Q: Gradex des débits, en m³/s;

 Q_{MT1} : débit moyen sur la durée de crue de période de retour T_1 , en m^3/s ; Q_{MT2} : débit moyen sur la durée de crue de période de retour T_2 , en m^3/s ;

Le coefficient de pointe (débit moyen journalier/débit de pointe instantané) est estimé à 0,88 sur la station de Pommeuse (données Banque Hydro).

Tableau 20 : Calcul du coefficient de pointe de la station hydrométrique de Pommeuse

T (ans)	Q _j (m ³ /s)	Q _{IX} (m ³ /s)	Coefficient de pointe
5	64	75	0,85
10	77	90	0,86
20	90	100	0,90
50	110	120	0,92
Coefficient de pointe moyen			0,88

Les tableaux ci-après présentent les résultats ainsi obtenus :

Tableau 21 : Application de la méthode du Gradex sur le BV du Grand Morin

Tableau 21. Application de la metrode du Gradex sur le BV du Grand Morini					
Bassin versant	QIX ₂₀ (m ³ /s)	QIX ₅₀ (m ³ /s)	QIX ₁₀₀ (m ³ /s)		
BV 1 : Meilleray	45,3	59,9	70,9		
BV 2 : Chauffry	69,3	91,7	108,4		
BV 3 : Orgeval	26,0	31,0	35,0		
BV 4 : Pontmoulin	81,3	107,5	127,2		
BV 5 : Liéton	9,9	10,0	12,0		
BV 6 : Mouroux	108,2	143,1	169,3		
BV 7 : Pommeuse	109,3	144,5	171,0		
BV 8 : Aubetin	47,0	62,2	73,6		
BV 9 : Vaudessard	16,1	17,0	19,0		
BV 10 : Crécy-la-Chapelle	148,1	195,9	231,7		
BV 11 : Mesnil	14,7	19,6	23,2		
BV 12 : Couilly-Pont-aux-Dames	152,6	201,8	238,8		
BV 13 : Porte à bateaux	154,7	204,6	242,0		

IV.2.4.3. Synthèse des débits de pointe obtenus

Ainsi, au droit des différents points de calculs hydrologiques, les débits caractéristiques obtenus sont résumés dans le tableau suivant :

Tableau 22 : Evaluation des débits de pointe caractéristiques de périodes de retour 10, 20, 50 et 100 ans

Bassin versant	QIX ₂ (m ³ /s)	QIX ₅ (m ³ /s)	QIX ₁₀ (m ³ /s)	QIX ₂₀ (m ³ /s)	QIX ₅₀ (m ³ /s)	QIX ₁₀₀ (m ³ /s)
BV 1 : Meilleray	20	28	34	45,3	59,9	70,9
BV 2 : Chauffry	30,6	42,8	52	69,3	91,7	108,4
BV 3 : Orgeval	-	-	23	26,0	31,0	35,0
BV 4 : Pontmoulin	35,9	50,3	61	81,3	107,5	127,2
BV 5 : Liéton	-	-	7,4	9,9	10,0	12,0
BV 6 : Mouroux	56,6	71,5	81,2	108,2	143,1	169,3
BV 7 : Pommeuse	57	72	82	109,3	144,5	171,0
BV 8 : Aubetin	24,6	31,1	35,3	47,0	62,2	73,6
BV 9 : Vaudessard	-	i	12	16,1	17,0	19,0
BV 10 : Crécy-la-Chapelle	77,4	97,8	111,1	148,1	195,9	231,7
BV 11 : Mesnil	-	i	11	14,7	19,6	23,2
BV 12 : Couilly-Pont-aux-Dames	79,8	100,8	114,5	152,6	201,8	238,8
BV 13 : Porte à bateaux	80,9	102,2	116,1	154,7	204,6	242,0

Avec:

Q2 et Q5 calculés par la formule de Myer;

Q₁₀ calculé par la méthode Crupédix ajusté;

 $Q_{20},\,Q_{50}$ et Q_{100} calculés par la méthode des Gradex.

IV.2.5. Estimation des débits d'étiage

Un étiage se définit comme étant une baisse périodique des eaux d'un cours d'eau; le plus bas niveau des eaux. Il s'agit donc des débits observés en périodes de sécheresse, soit lorsque l'apport en eau de ruissellement est faible ou nul et que seul l'écoulement souterrain alimente les eaux de surface. Les étiages peuvent aussi être observés en été ou au début de l'automne lorsque les précipitations se font rares, et ce, pendant des périodes plus ou moins prolongées.

Lorsqu'un nombre suffisant de données est disponible, les débits d'étiage sont généralement évalués à partir d'une étude hydrologique dite classique. Celle-ci consiste à réaliser une analyse statistique des débits minimums enregistrés à une station hydrométrique située sur la rivière à l'étude.

L'ensemble des lois statistiques généralement utilisées en hydrologie doit être ajusté pour estimer les débits minimums d'étiage de récurrence de 2 ans et de 5 ans, d'une durée de 3 ou de 10 jours consécutifs (VCN3 et VCN10). La loi décrivant le mieux l'échantillon de données est retenu.

Sont présentés ici les débits d'étiage (fournis par la Banque Hydro), calculés par la loi de Galton (ou loi log normale) sur la station de Pommeuse mais également pour la station de Meilleray. En effet, bien que cette dernière soit restée située en amont, il peut être intéressant d'en observer les débits d'étiage.

Tableau 23 : Débits d'étiage de la station hydrométrique de Meilleray

Fréquence	VCN3 (m ³ /s)	VCN10 (m ³ /s)	QMNA (m ³ /s)
Biennale	0,780 [0,690;0,890]	0,800 [0,710;0,910]	0,860 [0,740;1,000]
Quinquennale sèche	0,630 [0,530;0,710]	0,650 [0,540;0,730]	0,660 [0,540;0,770]

Tableau 24 : Débits d'étiage de la station hydrométrique de Pommeuse

Fréquence	VCN3 (m ³ /s)	VCN10 (m ³ /s)	QMNA (m ³ /s)
Biennale	2,200 [2,100;2,400]	2,300 [2,200;2,400]	2,500 [2,400;2,700]
Quinquennale sèche	1,900 [1,700;2,000]	1,900 [1,800;2,000]	2,100 [1,900;2,200]

Avec:

QMNA, le débit moyen mensuel sec ou débit mensuel minimal calculé sur toute la période d'observation.

De plus, une campagne de mesure du débit sur la zone d'étude a été réalisée en condition d'étiage, le 02/09/2010 (cf. chapitre Hydraulique). Le débit observé sur la zone d'étude était alors proche de 1,7 m³/s, tandis que celui mesuré à la station hydrométrique de Pommeuse était pour la même journée de 1,71 m³/s. Ce résultat correspond au seuil de crise renforcé mentionné dans le SAGE.

Par conséquent, on prendra pour la modélisation hydraulique comme valeurs de débit d'étiage sur la zone d'étude celles effectivement observées.

IV.2.1. Estimation des débits au module

Ces débits ont été évalués par la formule de Myer, qui fait appel aux caractéristiques des cours d'eau jaugés se trouvant à proximité de la zone d'étude et dont les caractéristiques sont proches de celles de la zone d'étude. Dans le cas présent, on utilisera les données de les stations de Meilleray et Pommeuse dont les débits moyens interannuels (module) sont respectivement 1,93 m³/s et 5,48 m³/s.

B	Module	e (m³/s)	0
Bassin versant	Station	Myer	Superficie (km²)
BV 1 : Meilleray	1,93	1,93	349
BV 2 : Chauffry	-	2,95	594
BV 3 : Orgeval	-	ı	107
BV 4 : Pontmoulin	-	3,46	725
BV 5 : Liéton	-	ı	19
BV 6 : Mouroux	-	5,44	762
BV 7 : Pommeuse	5,48	5,48	769
BV 8 : Aubetin	-		269
BV 9 : Vaudessard	-	ı	26
BV 10 : Crécy-la-Chapelle	-	7,45	1128
BV 11 : Mesnil	-	-	26
BV 12 : Couilly-Pont-aux-Dame	-	7,67	1171
BV 13 : Porte à bateaux	-	7,78	1191

Tableau 25: Modules sur le bassin versant du Grand Morin

IV.3. HYDRAULIQUE

IV.3.1. Relevés de terrain

IV.3.1.1. Relevés topographiques

Le nivellement a nécessité l'utilisation :

- d'une station de nivellement automatique avec pige graduée de géomètre télescopique de 5 mètres ;
- d'un appareil ROVER GNSS avec réseau Orphéon (positionnement GPS), qui permet d'enregistrer en instantané les coordonnées x, y, z d'un point donné.

Des repères provisoires ont été posés et nivelés à proximité du cours d'eau, sur des parties planes et fixes telles que des plaques de regard, des bordures de voiries, des parapets de ponts, etc..

Une partie des relevés a été réalisée directement avec le positionnement GPS, les secteurs où la couverture satellitaire était insuffisante (couvert végétal trop important), ont été relevés à l'aide de la station de nivellement automatique.

L'ensemble des levés sont calés en m NGF, et effectués avec une précision centimétrique.

Environ 445 profils en travers du lit mineur ont été réalisés sur la zone d'étude, pour chacun desquels, les points cotés sont à minima :

- le haut des berges ;
- le fond du lit à gauche, au milieu et à droite,
- le fil d'eau.

L'ensemble des données ont été reportées sur fichier Autocad.

Figure 29 : Exemple de profils en travers sur le Grand Morin, extrait du plan autocad

Sur l'exemple ci-avant, à partir du plan de base issu de la photorestitution, les différents éléments sont notés :

- tracé rose : les profils en travers (22 à 36) sont des polylignes 3D, chaque carré bleu correspondant à un point coté en m NGF ;
- points cotés bleu : niveau d'eau en m NGF ;
- points cotés jaune et orange : hauts de berge et lit majeur en m NGF.

IV.3.1.2. Campagnes de mesures de débit

Pour l'instant, deux campagnes de mesures de débit ont été réalisées le 22/09/2010 et le 10/01/2011, ce qui correspondait respectivement à une situation d'étiage et une situation de hautes eaux.

Les résultats des campagnes sont présentés sur la figure page suivante.

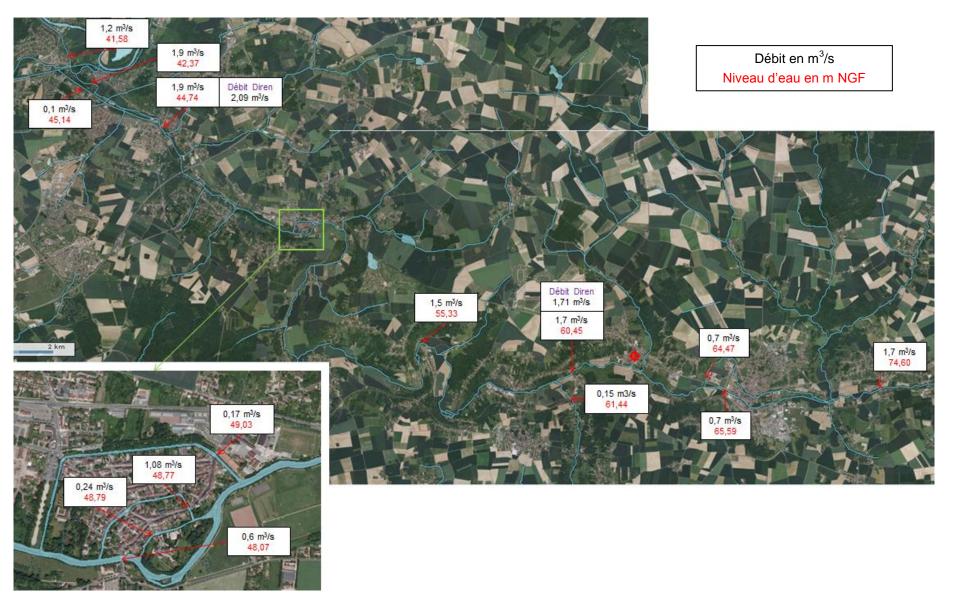


Figure 30 : Campagne de débit à l'étiage (2 septembre 2010)

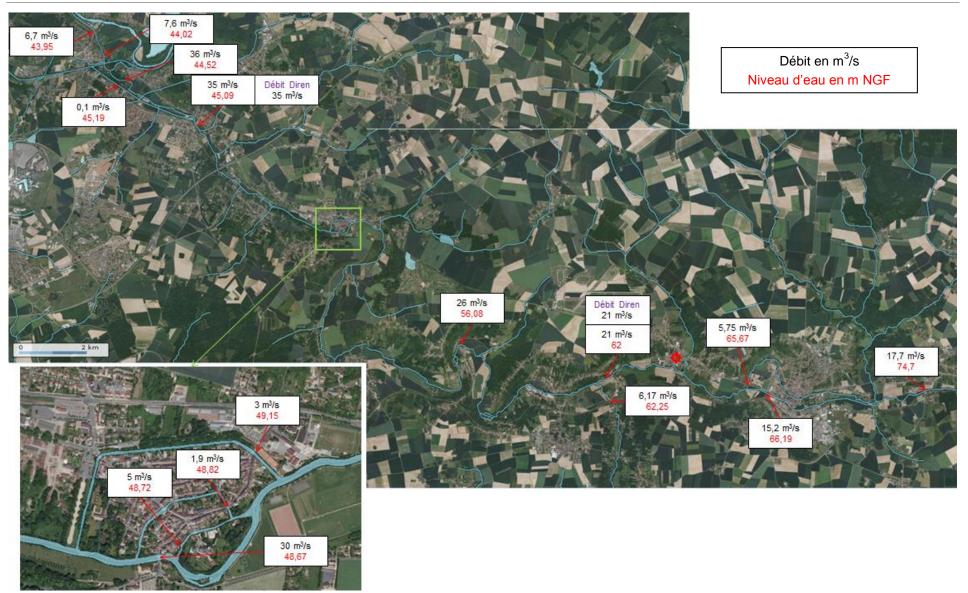


Figure 31 : Campagne de débit en hautes eaux (10 janvier 2011)

IV.3.1.3. Sondes de mesure du niveau

Quatre sondes de mesure du niveau ont été installées depuis le mois de mars 2011 :

- au moulin Trochard;
- à l'aval du moulin Coubertin ;
- au pont de la D20e à Guérard;
- au pont de la D20 à Crécy-la-Chapelle.

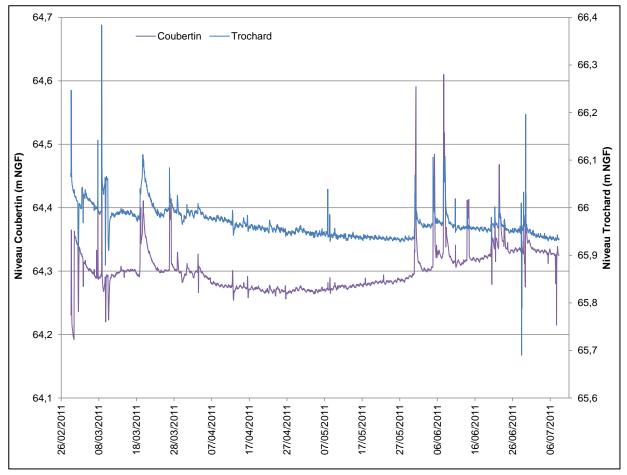


Figure 32 : Mesures en continu des niveaux du Grand Morin aux moulins de Coubertin et Trochard

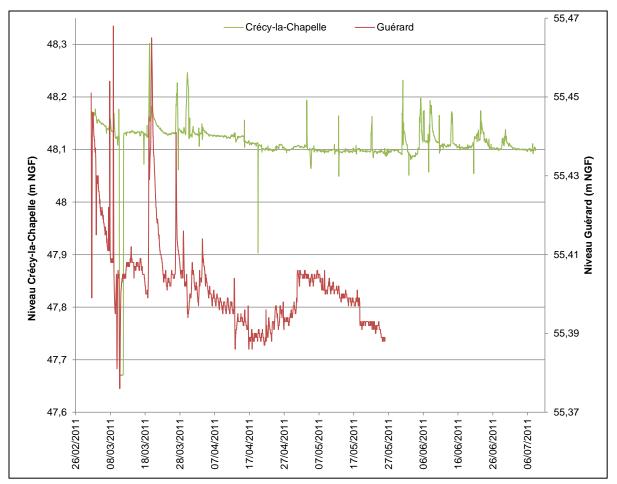


Figure 33 : Mesures en continu des niveaux du Grand Morin à Guérard et Crécy-la-Chapelle

Les niveaux varient globalement de la même façon (les courbes des stations de Crécy-la-Chapelle et de Guérard n'étant pas à la même échelle, il est difficile de les comparer). Les stations présentent cependant des disparités, avec des pics isolés et des chutes brutales de niveau, qui sont peut-être liés à des manipulations d'ouvrages en amont ou plus vraisemblablement des embâcles qui se bloquent ponctuellement aux abords des sites de mesures (pile de pont à Guérard et Crécy-la-Chapelle notamment).

Deux épisodes de montées (entre 15 et 30 cm) des eaux apparaissent début juin, pour lesquels les données de débit à Pommeuse montrent une augmentation du débit (Banque Hydro). De fortes pluies peuvent être à l'origine de ce résultat, en effet, le mois de juin apparait comme un mois très pluvieux (données pluviométriques Météo France).

IV.3.2. Diagnostic des ouvrages

IV.3.2.1. Relevé des ouvrages hydrauliques

Les ouvrages hydrauliques ont été relevés et cotés en m NGF, les dimensions et cotes servent de données d'entrée du modèle hydraulique.

Par ailleurs, l'ensemble des données recueillies sur les ouvrages seront consignées dans une fiche ouvrage en fin d'étude.

IV.3.2.2. Etat des ouvrages

L'état des ouvrages hydrauliques a été évalué selon l'état de quatre éléments fonctionnels : radier des vannes ou crête des déversoirs, bajoyers, corps : pelle de la vanne, corps du déversoir, et manœuvre pour les vannes.

Une note de 1 est attribuée lorsque l'élément est en bon état, fonctionnel, une note de 0,5 est attribuée lorsqu'un dysfonctionnement est observé (fuites sous une vanne fermée du fait d'un radier irrégulier), une note de 0 est attribuée lorsque l'élément n'est pas fonctionnel (absence de pelle, absence de crémaillère, etc.).

Les notes, attribuées à chaque ouvrage, sont sommées et rapportées à une note globale sur 10 pour le moulin. Certains critères n'ont pas pu être renseignés car difficilement observables lors des relevés, et les ouvrages n'ont pas été manœuvrés, l'état de l'élément manœuvre est donc essentiellement évalué sur la présence ou l'absence de système de manœuvre. Les ouvrages démantelés ne sont pas évalués.

Le tableau ci-après donne l'exemple des éléments amont d'un ouvrage :

Radier/crête Manœuvre Max **Bajoyers** Corps **Points** Ouvrage Type V1 1 0 0 3 1 V2 2 0 0 0 V3 0 2 0 0 vannes de V4 décharge 0 0 2 0 amont V5 0 0 2 0 2 V6 0 0 0 V7 0 0 1 1 3 D8 déversoir 1 1 3 3 En grisé: non évalué / évaluable 5

Tableau 26 : Exemple de notation sur un ouvrage

Ainsi, on peut sommer le total des points, et le rapporter au maximum qui puisse être obtenu (1 à tous les éléments).

Le tableau suivant donne la synthèse des évaluations faites sur l'ensemble des ouvrages hydrauliques, avec un classement selon 3 états :

mauvais : note < 5/10 ;

- moyen: note entre 5/10 et 7,5/10;

- bon : note > 7,5/10.

Points Note /10 Classement Ouvrage Max Moulin de la Bretonnière Démantelé - Non évalué Usine de Boissy-le-Châtel 39 25,6 6,5 moyen Pontmoulin 45 21,6 4,8 mauvais Moulin de l'Arche 30 28,8 9,6 bon Moulin des Prés 38 33,8 8,8 bon Moulin Trochard Démantelé - Non évalué Démantelé - Non évalué Moulin de Coubertin Clapet de Mouroux 8,7 moyen Barrage de Pommeuse Démantelé - Non évalué La Billebauderie Démantelé - Non évalué Moulin de Sainte-Anne 35,9 bon Moulin Guérard Démantelé - Non évalué Moulin Bicheret Démantelé - Non évalué -Démantelé - Non évalué Moulin de Génevray Moulin de Prémol 17,5 19 bon Démantelé - Non évalué Moulin de Coude 17 Moulin de Tigeaux 27 6,2 moyen 20 Moulin de Serbonne 15,5 7,7 bon Moulin de la Chapelle 13 5,3 moyen Barrage du Faubourg 11 9 8,1 bon 30,5 33 9,2 Moulin Brûlé bon Moulin Nicol 7,3 15 11 moyen 25 Moulin Guillaume 28 8,9 bon Moulin Martigny 7 6,5 9.2 bon Moulin Drevault 9 7,5 8,3 bon Moulin de la Sault 20 14,5 7,2 moyen Moulin de Misère Démantelé - Non évalué Moulin Talmé Démantelé - Non évalué -17,5 Moulin de Quintejoie 7,9 bon Démantelé - Non évalué Moulin de Liarry Porte à Bateaux 16 16 10 bon Ouvrage bras gauche 8 5 6,2 moyen

Tableau 27 : Evaluation de l'état des ouvrages hydrauliques

Globalement les ouvrages sont bien entretenus par les communes ou leurs propriétaires. Néanmoins, les ouvrages présentant de nombreuses vannes non manœuvrables apparaissent en état moyen, mais structurellement la majorité des maçonneries sont en bon état.

IV.3.2.3. Niveaux réglementaires et modes de gestion

La comparaison des ouvrages actuels à ceux décrits dans les règlements d'eau anciens, montre parfois des disparités importantes, des travaux ont pu avoir eu lieu depuis sans avoir été administrativement déclarés. De même, il est rare de retrouver le repère du niveau légal de la retenue sur le site, ou d'être certain qu'il n'a pas été déplacé au cours du temps.

En règle générale, la crête des déversoirs est arasé au niveau légal de la retenue, et souvent les vannes de décharge également (surverse au-dessus des vannes fermées).

Du fait du mauvais état de certains ouvrages ou du maintien de vannes ouvertes en permanence, les niveaux sont souvent inférieurs au règlement d'eau.

Le tableau ci-après liste de façon synthétique les principales caractéristiques des ouvrages hydrauliques, avec notamment :

- les cotes relevées en m NGF des crêtes de déversoir, du sommet des vannes fermées, (des repères légaux en place);
- le niveau réglementaire retenu, étant souvent la cote de crête du déversoir ;
- la ligne d'eau observée en amont des ouvrages en situation fermée et pendant l'ouverture des ouvrages
- la hauteur de chute résultante.

Tableau 28 : Présentation synthétique des ouvrages hydrauliques

						<u>Tableau 28</u>	: Présentation s	<u>ynthétique</u>	des ouvrage	<u>es hydrauliques</u>			
Ouvrage	Types d'ouvrages présents	Cotes relevées (m NGF)	Niveau réglementaire retenu (m NGF)	Ligne d'eau (m NGF)	Chute (m)	Remous (m)	Observati Ligne d'eau (m NGF)	on à l'ouv Chute (m)	Remous (m)	Gestionnaire	Maintien d'un niveau	Commentaire	Photo
La Bretonnière PK (km) : 42,2 Bief (m) : -	Démantelé : 1 déversoir et 1 grille	Crête du déversoir : 74,63	74,63	74,99	-	Remous du pont à l'amont direct	74,64	0,8	Remous du pont à l'amont direct	Pas de	e gestion	Seuil apparu lors de l'ouverture de l'usine de Boissy-le- Châtel	
Usine de Boissy-le- Châtel PK (km) : 40,6 Bief (m) : 1600	1 déversoir et 9 vannes de décharge	Crête du déversoir : 74,43 Sommet des vannes : 74,88	74,43	74,70	2,56	1600	72,98	0,84	900	Commune de Boissy-le-Châtel	Oui, supérieur au niveau réglementaire	Zone d'influence jusqu'à l'ouvrage de La Bretonnière	
Pontmoulin PK (km) : 39,1 Bief (m) : 1500	7 vannes et 2 déversoirs en aval	Crête déversoir : 70,92	-	70,59	-	1300	70,40	0,4	1300	Simple mise en place de batardeau par les services techniques de Coulommiers	Non, impossible compte tenu de l'ouverture permanente des vannes	Ouvrage avec vannages en ruine et non fonctionnels	
Moulin de l'Arche PK (km) : 37,1 Bief (m) : 2000	6 vannes, 1 déversoir et 1 passe à canoës	Crête du déversoir : 70,46 Sommet des vannes : 70,48	70,46	70,61	1,91	2300	69,20	0,5	300	Services techniques de Coulommiers	Oui, pour maintien en eau des brassets de Coulommiers	-	

	Types		Niveau	Ligne			Observati	on à l'ouv	erture				
Ouvrage	d'ouvrages présents	Cotes relevées (m NGF)	réglementaire retenu	d'eau (m NGF)	Chute (m)	Remous (m)	Ligne d'eau (m NGF)	Chute (m)	Remous (m)	Gestionnaire	Maintien d'un niveau	Commentaire	Photo
Moulin des Prés PK (km) : 35,7 Bief (m) : 1400	8 vannes, 1 déversoir et 1 passe à	Crête du déversoir : 68,60 Sommet vanne : 68,88	(m NGF)	68,42	1,67	1400	66,81	0,1	0	Services techniques de Coulommiers	Oui, pour maintien en eau des brassets de Coulommiers	-	
Moulin Trochard PK (km) : 35,3 Bief (m) : 400	Démantelé : seuil résiduel et ancienne roue	Crête seuil résiduel : 65,08	-	66,01	-	0	-	-	-	Pas de	e gestion	-	
Moulin de Coubertin PK (km) : 32,7 Bief (m) : 2600	Démantelé : seuil résiduel	Crête seuil résiduel : 64,32	-	64,38	0,14	1030	-	-	-	Pas de	e gestion	-	
Clapet de Mouroux PK (km) : 31,0 Bief (m) : 1700	1 clapet, 2 déversoirs et 1 passe à canoës	Crête du déversoir : 64,20	64,2	64,27	1,88	2900	62,86	0,47	200	Commune de Mouroux	Oui, ouvrage automatisé	-	

	Types	Cotes relevées	Niveau réglementaire	Ligne	Chute	Remous		ion à l'ouv			Maintien d'un		
Ouvrage	d'ouvrages présents	(m NGF)	retenu (m NGF)	d'eau (m NGF)	(m)	(m)	Ligne d'eau (m NGF)	Chute (m)	Remous (m)	Gestionnaire	niveau	Commentaire	Photo
Barrage de Pommeuse PK (km) : 29,1 Bief (m) : 1900	Démantelé : 1 seuil résiduel, 1 vanne, 1 grille et 1 batardeau	Crête seuil résiduel : 64,32		61,77	1,31	1600	-	-	-	Pas de	e gestion	-	
La Billebauderie PK (km) : 27,6 Bief (m) : 1500	Démantelé : 3 déversoirs et 1 seuil	Crête déversoir : 61,56	61,56	60,36	0,84	900	-	-	-	Pas de	e gestion	-	
Moulin de Sainte-Anne PK (km) : 25,0 Bief (m) : 2600	7 vannes, 1déversoir, 2 seuils et 1 grille	Crête du déversoir : 58,80 Sommet vanne : 58,40	58,80	-	-	2500	57,42	0,39	2500 (seuil amont)	Propriétaire	Non, compte tenu de l'ouverture permanente d'une vanne	Présence de bras annexes	
Moulin Guérard PK (km) : 22,5 Bief (m) : 2500	Démantelé : déversoir et seuils résiduels	Crête du déversoir : 57,01	57,01	55,8	0,4	500	-	-	-	Pas de	e gestion	-	

Ouvrage	Types d'ouvrages	Cotes relevées	Niveau réglementaire	Ligne d'eau	Chute	Remous	Observati	on à l'ouv	erture Remous	Gestionnaire	Maintien d'un	Commentaire	Photo
Moulin Bicheret PK (km) : 21,8 Bief (m) : 700	présents Démantelé :	(m NGF) Crête seuil résiduel : 54,37	retenu (m NGF)	(m NGF) 55,02	(m) 0,65	(m) 100	(m NGF)	(m) -	(m)		niveau e gestion	-	
Moulin de Génevray PK (km) : 20,6 Bief (m) : 1200	Démantelé : seuils résiduels	Crête seuil résiduel : 54,41	-	54,41	0,2	200	-	-	-	Pas de	e gestion	-	
Moulin de Prémol PK (km) : 18,3 Bief (m) : 1300	vannes, 2	Crête du déversoir : 54,26 Sommet vanne : 58,40	54,26	54,27	1,53	2500	53,96	1,22	2000	Propriétaire	Oui	Hydroélectricité	
Moulin de Coude PK (km) : 17,0 Bief (m) : 1300	Démantelé : 1 déversoir, 1 vanne et 1 grille	Niveau légal : 53,12 Sommet vanne : 53,01	53,12	52,05	0,27	Remous du pont à l'amont direct	-	-	-	Pas de	e gestion	-	

	_		Niveau				Observat	ion à l'ouv	erture				
Ouvrage	Types d'ouvrages présents	Cotes relevées (m NGF)	réglementaire retenu (m NGF)	Ligne d'eau (m NGF)	Chute (m)	Remous (m)	Ligne d'eau (m NGF)	Chute (m)	Remous (m)	Gestionnaire	Maintien d'un niveau	Commentaire	Photo
Moulin de Tigeaux PK (km) : 15,5 Bief (m) : 1500	2 vannes, 2 déversoirs, 1 grille et 1 seuil (bras de décharge)	Crête du déversoir : 51,91 Sommet vanne : 52,07		51,88	1,17	3200	50,96	0,25	1500	Propriétaire	Oui	-	
Moulin de Serbonne PK (km) : 13,4 Bief (m) : 2100	1 vanne et 2 déversoirs	Crête du déversoir : 50,70 Sommet vanne : 50,80	50,70	50,74	0,74	2000	-	-	-	Pas de	e gestion	Vannage non manipulable	
Moulin de la Chapelle PK (km) : 11,3 Bief (m) : 2100	1 déversoir, 1 vanne, 1 grille et 1 roue	Crête du déversoir : 49,94 Sommet vanne : 50,18	49,94	50,02	0,96	2100	-	-	-	Pas de	e gestion	Vannage non manipulable	
Barrage du Faubourg PK (km) : 10,0 Bief (m) : 1300	2 vannes et 1 déversoir	Crête du déversoir : 49,40 Sommet vanne : 49,15	49,40	49,01	1,8	1300	-	-	-	Commune de Crécy-la- Chapelle	Oui	-	

	Types		Niveau	Ligne			Observat	ion à l'ouve	erture				
Ouvrage	d'ouvrages présents	Cotes relevées (m NGF)	réglementaire retenu (m NGF)	d'eau (m NGF)	Chute (m)	Remous (m)	Ligne d'eau (m NGF)	Chute (m)	Remous (m)	Gestionnaire	Maintien d'un niveau	Commentaire	Photo
Moulin Brûlé / Moulin Nicol PK (km) : 7,8 Bief (m) : 2200	6 vannes, 3	Crête du déversoir : 48,11 Sommet vanne : 48,17	48,11	48,17	1,14	2200	47,14	0,11	100	Commune de Crécy-la- Chapelle	Oui	-	
Moulin Guillaume / Moulin de Martigny PK (km) : 6,4 Bief (m) : 1400	2 déversoirs, 5 vannes, 3 grilles et 1 roue	Crête du déversoir : 47,47 Sommet vanne : 47,93	47,47	-	-	1500	46,57	0,87	1300	Propriétaires	Oui	-	
Moulin Drevault / Moulin de la Sault PK (km) : 6,0 Bief (m) : 400	2 déversoirs, 4 vannes et 1 roue	Crête du déversoir : 47,01 Sommet vanne : 47,34	47,01	-	-	400	45,61	0,12	200	Propriétaires	Non, compte tenu de l'état du radier des ouvrages	-	
Moulin de Misère PK (km) : 5,4 Bief (m) : 600	Démantelé : seuils résiduels	Crête seuil résiduel : 44,35	-	45,02	0,17	≈ 0	-	-	-	Pas de	e gestion	-	

	Types		Niveau	Ligne			Observat	on à l'ouv	erture				
Ouvrage	d'ouvrages présents	Cotes relevées (m NGF)	réglementaire retenu	d'eau (m NGF)	(m)	Remous (m)	Ligne d'eau (m NGF)	Chute (m)	Remous (m)	Gestionnaire	Maintien d'un niveau	Commentaire	Photo
Moulin Talmé PK (km) : 4,4 Bief (m) : 1000	Démantelé : seuils résiduels	Crête seuil résiduel : 43,82	(m NGF)	44,17	0,28	600	-	-	-	Pas de	e gestion	-	
Moulin de Quintejoie PK (km) :3,8 Bief (m) : 600	5 vannes et 2 déversoirs	Crête du déversoir : 44,63 Sommet vanne : 44,95	44,63	-	-	1500	43,56	0,19	300	Commune de Couilly-Pont-aux- Dames	Oui	-	
Moulin de Liarry PK (km) : 2,5 Bief (m) : 1300	Démantelé : 1 déversoir et seuils résiduels	Crête du déversoir : 43,87	-	43,00	0,3	≈ 0	-	-	-	Pas de	e gestion	-	
Porte à Bateaux PK (km) : 0,8 Bief (m) : 1700	2 déversoirs et 3 vannes	Crête du déversoir : 42,27 Sommet vanne : 42,37	42,27	-	-	1700	42,21	2	1500	Commune d'Esbly	Oui	Diffluence bras gauche et bras droit	

IV.3.3. Modèle hydraulique

Le modèle est réalisé sur le logiciel Infoworks RS de Wallington Software, qui est un modèle pseudo 2D, permettant de simuler le système d'équations de l'écoulement, ou équations de « Barré Saint Venant ».

Le modèle est construit à partir de l'ensemble des relevés topographiques du lit et des ouvrages. Il comprend notamment :

- les vannes et les clapets. Les ouvrages peuvent être modélisés en position fixe, en position manuelle (ouverture en fonction du temps) ou en position de régulation (ouverture en fonction d'une cote ou d'un débit)
- les déversoirs et seuils ;
- les ponts et dalots. Différents modules sont utilisés pour la modélisation des ponts en fonction de leur configuration (orifices, conduites ou simples profils contraignants, etc.)
- les principaux radiers ;
- les pertes de charges singulières, liée à la topographie ou aux embâcles

Le modèle est ensuite calé sur des événements observés. Le calage consiste à ajuster les coefficients de rugosité et les coefficients de pertes de charge ponctuelle, afin de reproduire les lignes d'eau observés.

Des simulations sont ensuite réalisées à différents débits et pour différentes positions d'ouvrages, à partir des données hydrologiques sur le secteur d'étude, d'une part en situation actuelle, puis pour différents scénarios.

IV.3.3.1. Calage du modèle

En basse eaux, le calage est effectué à partir des niveaux d'eau mesurés avec les ouvrages en position fermée, puis avec les ouvrages en position ouverte, ce qui permet de caler le coefficient de rugosité du lit ainsi que les pertes de charges ponctuelles, le bief n'étant plus sous l'influence des ouvrages.

Les mesures sont effectuées avec des débits variant de 1.7 m³/s à 6 m³/s à Pommeuse. Les écarts entre les niveaux d'eau issus du modèle et les cotes d'eaux mesurées sont inférieurs à 10 cm avec une moyenne à 4 cm de la valeur mesurée, et l'on peut considérer que le modèle est calé en basses et moyennes eaux.

En hautes eaux, le modèle est calé à partir des campagnes du 9 décembre 2010 et 10 janvier 2011, pour des débits de l'ordre de 20 m³/s à Pommeuse (35 m³/s à l'exutoire).

Les répartitions dans le modèle à Coulommiers et Crécy correspondent bien aux répartitions mesurées.

D'un point de vue niveaux d'eaux, le modèle est calé sur 8 cotes relevées lors de chacune des deux crues, et à partir de photos et observations sur le terrain. Les crues ne sont pas débordantes, excepté un débordement en amont de la Porte à bateau lors de la crue du 9 janvier. Ce débordement est bien représenté dans le modèle.

Le modèle a également été calé sur la crue centennale (170 m³/s à Pommeuse) à partir des hauteurs d'eau du PPRI. Le calage a été fait sur 40 points avec un écart moyen entre les cotes du PPRI et les cotes du modèle de 20 cm et un écart maximal de 50 cm.

Le modèle a été ensuite testé sur une crue quinquennale (crue de février 2008), mais en l'absence d'éléments sur les débordements de la crue et sur les positions réelles d'ouvrages lors de cette crue, il n'y a pas de calage réalisé sur cette crue.

On considère que le modèle est calé à la fois pour les basses et moyennes eaux avec une précision de 10 cm, pour les crues non débordantes avec une précision de 15 cm et pour les crues débordantes avec une précision de 50 cm.

IV.3.3.2. Simulations en situation actuelle

a. Débits simulés et positions d'ouvrages

Les simulations suivantes sont réalisées à débit constant, incrémentées dans le modèle comme selon le tableau suivant.

Le tableau indique également les cotes de la Marne utilisées pour chacune des gammes de débit étudiée.

étiage module Q 2 ans Q 5 ans Q10 ans m^3/s 3 BV1+BV2 1,5 30 43 52 m^3/s BV3 +BV4 0,5 5 0 7,5 9 m^3/s BV5+BV6+BV7+BV8 0 2 20 21 20 m^3/s BV9+BV10 0,1 2 20,5 26 30 m^3/s BV11+BV12 0,1 0,2 2,5 3 3,5 BV13 m^3/s 0 1 0,1 1,5 1,6 cote Marne m NgF 41 41,8 43,16 43,4 44,6

Tableau 29 : Débits et cote de la Marne dans les simulations

Seuls certains ouvrages sont manipulables sur la partie du Grand Morin concernée par cette étude et ont, en raison de cette gestion possible, été présentés explicitement dans cette étude.

Cependant, les autres ouvrages peuvent également constituer une entrave au libre écoulement des crues et générer des inondations puisqu'ils sont installés dans le lit mineur de la rivière. En effet, les ouvrages non manipulables présentent une capacité limitée au même titre que les ouvrages démantelés mais sur lesquels des seuils résiduels subsistent.

Même non présentés dans ce document, ces sites ont été intégrés à la modélisation car ils jouent un rôle hydraulique important.

Le tableau suivant indique pour chacun d'eux, quels ont les positions des ouvrages pendant la crue :

Tableau 30 : Ouvrages ouverts en crue dans le modèle

		viages ouverte en erae dans le modele
n°	Nom Moulin	position dans le modèle
2	Usine Boissy-le-Châtel	ouverture V1, V2, V3 = 3 m
3	Pontmoulin	batardeau vers coulommiers (en crue, batardeau de 1m)
4	Moulin de l'Arche	manipulable mais non utilisé en crue
5	Moulin des Prés	Vannes v3 à v8 ouvertes
8	Clapet de Mouroux	Clapet1 (abaissé au minimum)
11	Moulin de Ste Anne	6 vannes ouvertes de 2 m
15	Moulin de Prémol	V2 ouverte de 1,9 m V4 ouverte de 1,25 m V7 ouverte de 0,5 m (roue)
17	Moulin de Tigeaux	V2 ouverte de 1,5 m V4 ouverte de 1,7 m
20	Barrage du Faubourg	V1 ouverte de 2 m (V2 non manipulable) De plus, les 3 ouvrages dans Crécy sont ouverts
21	Moulin Nicol/Brûlé	V2 ouverte de 2 m V6 ouverte de 2 m
22	Moulin Guillaume	V7 ouverte de 1,2 m V10 ouverte de 2 m v11 ouverte de 2 m
23	Moulin Drevault/Sault	V1 ouverte de 4 m
26	Moulin de Quintejoie	V1 ouverte de 1,8 m V3 ouverte de 2 m
28	Porte à bateaux	V1, V2 et V3 ouvertes de 4 m

b. Capacité des ouvrages à la cote de régulation

Pour les ouvrages qui sont encore fonctionnels, le tableau suivant indique les débits à partir desquels la cote de régulation n'est plus maintenue au droit des moulins.

Tableau 31 : Capacité des ouvrages à la cote de régulation

n°	Nom Moulin	cote de régulation	capacité à la cote de régulation
2	Usine Boissy- le-Châtel	74,43	15 m³/s
4	Moulin de l'Arche	70,46	fonction du nombre de vannes ouverte et du batardeau à Pont moulin Exemple : pour 2 vannes ouvertes et un batardeau de 60 cm, la cote de régulation est atteinte pour un débit de 10 m³/s dans le moulin, soit 32 m³/s en amont de Pontmoulin.
5	Moulin des Prés	68,6	fonction du batardeau à Pont Moulin
8	Clapet de Mouroux	64,2	36 m ³ /s
11	Moulin de Sainte-Anne	58,8	25 m³/s dans le bras du moulin, soit 45 m³/s au total en amont de Saint Anne
15	Moulin de Prémol	54,26	10 m ³ /s
17	Moulin de Tigeaux	51,9	17 m ³ /s
20	Barrage du Faubourg	49,4	36 m³/s dans le bras du Moulin, soit 55 m³/s en amont de Crécy, lorsque les ouvrages dans Crécy sont ouverts
21	Moulin Nicol/Brûlé	48,12	22 m³/s
22	Moulin Guillaume	47,47	22 m³/s
23	Moulin Drevault/Sault	47,21	30 m ³ /s
26	Moulin de Quintejoie	44,63	20 m ³ /s
28	Porte à bateaux	42,27	28 m ³ /s (basé sur la crue de février 2008, la capacité dépend du niveau de la Marne

c. Cotes et chutes au niveau des moulins

Les tableaux suivants présentent pour l'ensemble des moulins et à différents débits, les cotes en amont et en aval des moulins ainsi que la chute en cm.

Delta en cm	
9	chute < 15 cm
20	15 cm <chute<50 cm<="" td=""></chute<50>
65	chute >50 cm

Rq. : au niveau de la Porte à Bateaux, la chute est fonction de la cote de la Marne.

Tableau 32 : Cotes et chutes au niveau des moulins

	Etiage re	égulé	Etiage o	uvert	Module r	égulé	Module o	uvert	Crue 2	ans	Crue 5	ans	Crue 10	ans
	Cote amont	Delta en												
	Cote aval	cm												
	74,69		74,7	400	74,82	,	74,72	0.4	76,23	0.4	76,68	00	76,97	7.0
La Bretonnière	74,68	1	73,6	106	74,81	1	73,80	91	75,39	84	75,86	82	76,17	79
Deiger le Châtel	74,67	222	72,9	450	74,80	224	73,07	450	74,62	404	74,87	407	75,01	454
Boissy-le-Châtel	71,34	333	71,3	158	71,46	334	71,48	159	72,78	184	73,21	167	73,47	154
Moulin de	70,52	400	70,5	400	70,58	400	70,58	407	70,71	400	70,86	470	70,95	400
l'Arche	68,64	188	68,6	189	68,68	190	68,70	187	68,85	186	69,14	172	69,35	160
Moulin des Prés	68,62	244	66,8	65	68,62	227	66,94	60	67,17	39	67,44	6	67,79	1
woulin des Pres	66,18	244	66,2	00	66,35	221	66,34	60	66,78	39	67,37	О	67,78	1
Moulin de	64,33	12	64,3	58	64,45	16	64,40	42	65,73	9	66,18	13	66,59	14
Coubertin	64,21	12	63,7	56	64,29	10	63,98	42	65,64	9	66,05	13	66,44	14
Clapet de	64,19	254	62,2	61	64,18	200	62,58	42	64,64	24	64,93	24	65,06	27
Mouroux	61,65	234	61,6	01	62,18	200	62,15	42	64,40	24	64,69	24	64,80	21
Moulin de	61,55	99	61,6	99	61,94	96	61,93	96	63,70	27	64,09	26	64,21	26
Pommeuse	60,56	99	60,6	99	60,98	90	60,96	90	63,44		63,83	20	63,95	20
Billebauderie	60,24	87	60,2	85	60,70	113	60,69	112	62,25	133	62,49	73	62,58	59
Billebauderle	59,37	07	59,4	00	59,57	113	59,57	112	60,92	133	61,76	73	61,99	59
Moulin de Saint-	58,17	38	58,2	38	58,51	25	58,51	33	60,26	1	60,83	0	61,03	0
Anne	57,79	30	57,8	30	58,26	25	58,17	33	60,25		60,83	U	61,03	U
Moulin de	55,60	34	55,6	34	56,02	47	56,03	48	57,88	1	58,38	1	58,53	0
Guérard	55,26	34	55,3	34	55,55	41	55,55	40	57,87		58,37		58,52	U

	Etiage ré	égulé	Etiage o	uvert	Module re	égulé	Module o	uvert	Crue 2	ans	Crue 5	ans	Crue 10	ans
	Cote amont	Delta en	Cote amont	Delta en	Cote amont	Delta en	Cote amont	Delta en	Cote amont	Delta en	Cote amont	Delta en	Cote amont	Delta en
	Cote aval	cm	Cote aval	cm	Cote aval	cm	Cote aval	cm	Cote aval	cm	Cote aval	cm	Cote aval	cm
Moulin de Bicheret	54,77 54,68	9	54,8 54,7	9	55,12 55,03	9	55,12 55,04	9	57,54 57,33	21	58,05 57,80	26	58,20 57,93	28
Moulin de	54,28		54,2		54,45		54,45		56,74		57,34		57,51	
Génevray	54,26	2	53,5	78	54,33	12	54,06	39	56,73	1	57,33	1	57,50	1
Moulin de	54,26	177	53,4	95	54,26	149	53,96	121	55,11	23	55,69	21	55,88	19
Prémol	52,48	.,,	52,5		52,77	110	52,75		54,88	20	55,48	21	55,69	10
Moulin de	51,93	0	51,7	1	52,58	55	52,56	54	54,09	3	54,30	2	54,39	3
Coude	51,92	O	51,7		52,03	33	52,02	J 4	54,06	3	54,28	2	54,36	3
Moulin Tigeaux	51,91	121	50,9	13	51,91	94	51,35	38	52,81	3	53,22	3	53,36	3
Would Tigeaux	50,71	121	50,7	13	50,97	34	50,97		52,78	3	53,19	3	53,33	3
Moulin	50,70	70	50,7	71	50,90	72	50,90	72	51,87	3	52,23	2	52,37	2
Serbonne	50,00	70	50,0	/ 1	50,19	12	50,18	12	51,84	3	52,20	۷	52,34	
Moulin de la	50,00	134	50,0	175	50,16	95	50,16	144	51,03	24	51,32	30	51,44	33
Chapelle	48,66	134	48,3	175	49,22	95	48,72	144	50,79	24	51,02	30	51,10	33
Barrage du	48,64	48	47,7	55	49,16	88	48,11	68	50,02	33	50,49	24	50,62	27
Faubourg	48,16	40	47,2	55	48,28	00	47,43	00	49,69	33	50,25	24	50,35	21
Moulin	48,16	169	46,8	33	48,26	75	47,27	33	48,71	3	49,20		49,25	0
Brule/Nicol	46,47	169	46,5	33	47,51	75	46,94	33	48,69	3	49,20	0	49,24	U
Moulin	46,44	85	46,4	85	47,48	144	46,83	81	48,00	10	48,28	7	48,33	6
Guillaume	45,59	85	45,6	85	46,05	144	46,02	81	47,90	10	48,21	/	48,26	6

	Etiage régulé		Etiage régu		Etiage o	uvert	Module re	égulé	Module o	uvert	Crue 2	ans	Crue 5	ans	Crue 10	ans
	Cote amont	Delta en														
_	Cote aval	cm														
Moulin	45,47	4	45,5	5	46,03	39	46,01	37	47,69	27	48,02	23	48,08	22		
Sault/Drevault	45,43		45,4	5	45,64	39	45,63	37	47,42	21	47,79	23	47,86	22		
Maulin Minàra	44,89	45	44,9	44,9	45,20	34	45,21	52	47,06	22	47,36	25	47,41	24		
Moulin Misère	44,74	15	44,7	22	44,86	34	44,69	52	46,84	22	47,11	25	47,17	24		
4	44,73		44,3	40	44,84		44,56	00	46,27	7	46,79	4	46,91	4		
Moulin Talmé	44,72	1	43,9	40	44,80	4	43,93	63	46,20	7	46,74	4	46,87	4		
Moulin de	44,73	450	43,5	00	44,80	404	43,96	0.4	45,87	47	46,40	0	46,55	_		
Quintejoie	43,17	156	43,2	28	43,59	121	43,65	31	45,70	17	46,32	8	46,50	5		
	42,66	F-7	42,7	70	43,06		43,05	69	45,49	0	46,13	,	46,33			
Liarry	42,09	2,09	42,0	70	42,72	34	42,35		45,48	2	46,11	1	46,32	1		
D. (c.) D. (c.	42.04	404	41,0	0	42,59	007	41.84	43,64	_	44,24		45,26	40			
l Porte à Bateaux	41,00	104	41,0	0	40,32	227	41,83	1	43,59	5	44,18	6	45,16	10		

Ces données sont à rapprocher du paragraphe VI.3.1. à propos de l'analyse du taux d'étagement.

d. Courbes de remous

La section suivante présente les courbes de remous des ouvrages manipulables sur le secteur d'étude.

Les courbes de remous sont déterminées à l'étiage. Sur les profils en long suivant, la cote bleu représente la cote d'eau ouvrages ouverts et la cote en pointillés la cotes avec les ouvrages fermés.

> Usine de Boissy-le-Châtel

La courbe de remous du moulin de Boissy-le-Châtel remonte jusqu'au seuil de la Bretonnière, soit sur une longueur de 1600 mètres.

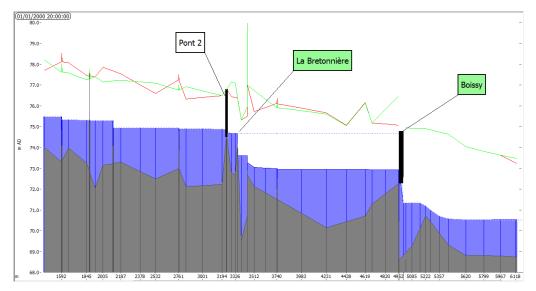


Figure 34 : Profil en long de l'Usine de Boissy-le-Châtel - ouvrages ouverts et fermés

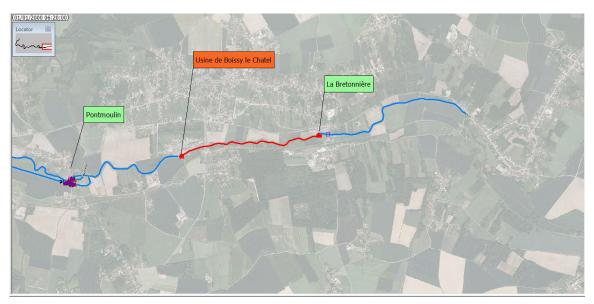


Figure 35 : Courbe de remous du l'Usine de Boissy-le-Châtel à l'étiage

> Moulin des Prés

La courbe de remous du moulin des Prés remonte jusqu'en aval du moulin de l'Arche soit sur une longueur de 1400 mètres.

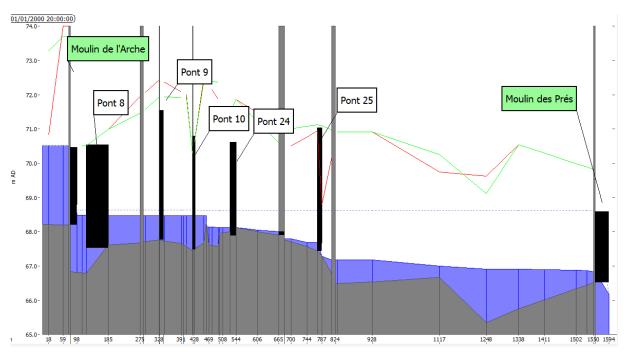


Figure 36 : Profil en long du Moulin des Prés - ouvrages ouverts et fermés

Figure 37 : Courbe de remous du Moulin des Prés à l'étiage

> Clapet de Mouroux

La courbe de remous du clapet de Mouroux remonte au niveau de la Fausse rivière jusqu'en aval du seuil D3FR et jusqu'au Pont 27 sur le bras de Coulommiers soit sur près de 2900 m. L'impact est cependant significatif principalement jusqu'au moulin de Coubertin.

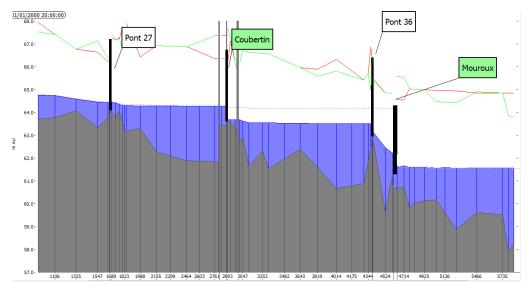


Figure 38: Profil en long clapet de Mouroux - ouvrages ouverts et fermés

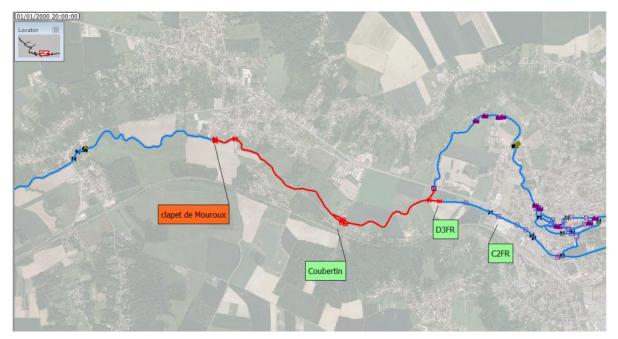


Figure 39 : Courbe de remous du clapet de Mouroux à l'étiage

> Moulin de Prémol

La courbe de remous du moulin du Prémol remonte jusqu'au moulin de Bicheret, soit sur une longueur de 2900 mètres.

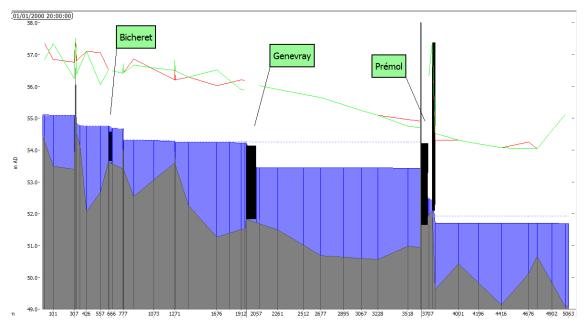


Figure 40: Profil en long du bief de Prémol - ouvrages ouverts et fermés

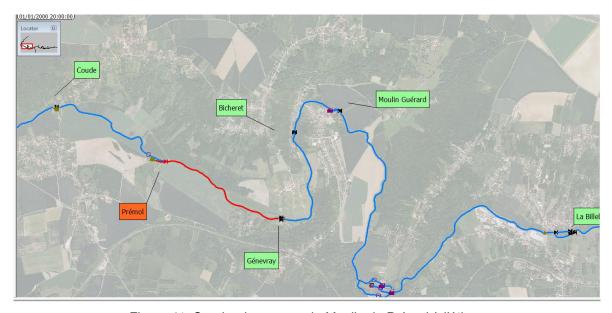


Figure 41: Courbe de remous du Moulin de Prémol à l'étiage

➤ Moulin de Tigeaux

La courbe de remous du moulin de Tigeaux remonte jusqu'au pont 46 situé en aval de Prémol, soit sur une longueur de 3200 mètres.

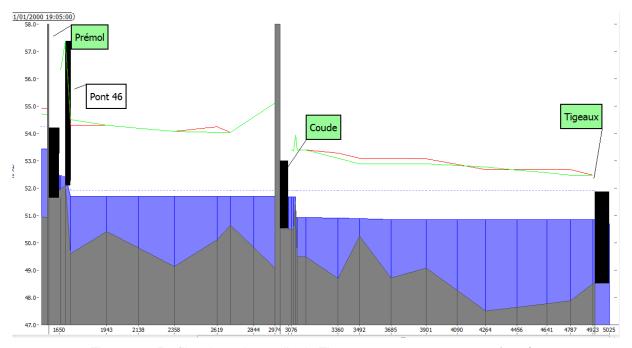


Figure 42 : Profil en long du moulin de Tigeaux - ouvrages ouverts et fermés

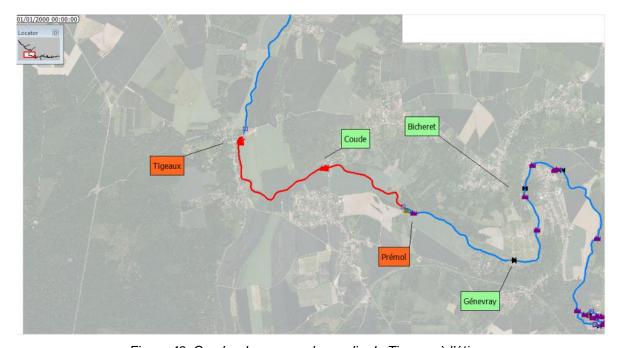


Figure 43: Courbe de remous du moulin de Tigeaux à l'étiage

> Barrage du Faubourg

La courbe de remous du moulin du Faubourg remonte jusqu'en aval du moulin de la Chapelle, soit sur une longueur de 1300 mètres.

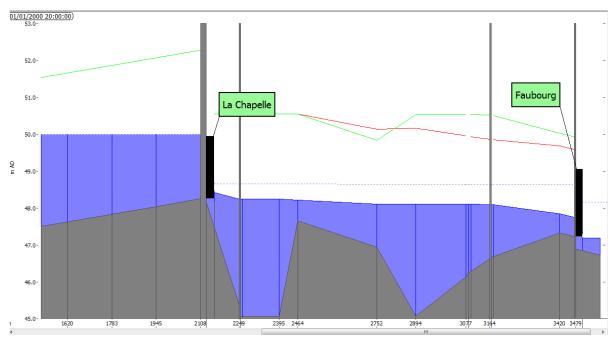


Figure 44: Profil en long du barrage du Faubourg - ouvrages ouverts (vanne v1) et fermés

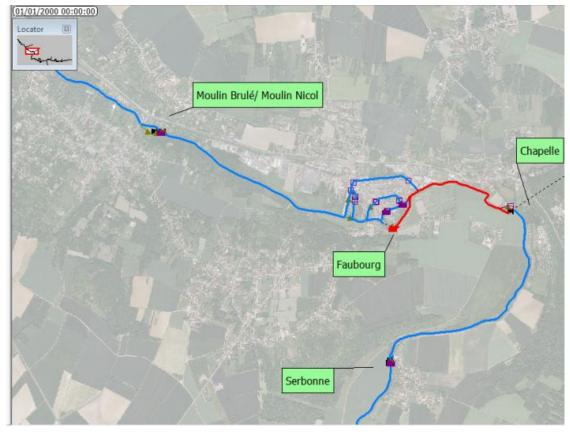


Figure 45: Courbe de remous du barrage du Faubourg à l'étiage

> Moulin Brûlé/Nicol

La courbe de remous du moulin Brûlé/Nicol remonte jusqu'en aval du moulin du Faubourg, en aval du déversoir 1 et du vannage 4 à Crécy-la-Chapelle, soit sur une longueur de 2200 m.

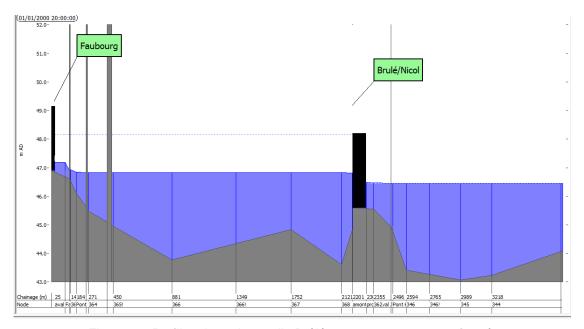


Figure 46: Profil en long du moulin Brûlé - ouvrages ouverts et fermés

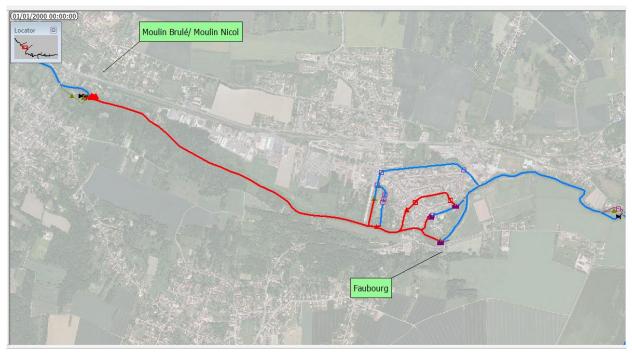


Figure 47: Corube de remous du moulin Brûlé à l'étiage

> Moulin de Quintejoie

La courbe de remous du moulin du Quintejoie remonte jusqu'au moulin de Misère, soit sur une longueur de 1500 mètres.

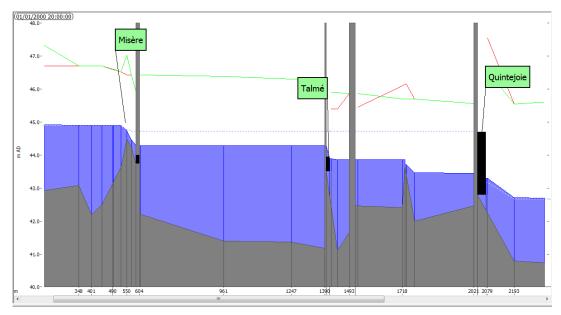


Figure 48: Profil en long du moulin de Quintejoie - ouvrages ouverts et fermés

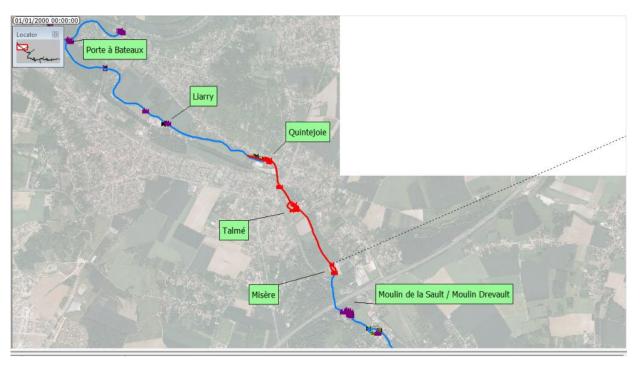


Figure 49: Courbe de remous du moulin de Quintejoie à l'étiage

e. Bilan des courbes de remous

La longueur des courbes de remous des différents moulins est donnée dans le tableau suivant.

Certains ouvrages non présentés jusqu'alors constituent également une contrainte à l'origine de long linéaire de de remous. Ils sont indiqués en

Tableau 33 : Courbes de remous

	Tableau 33 : Coulbes de l'ellious							
N°	Nom	Longueur de la courbe de remous (m)	Remarques					
1	Moulin de la Bretonnière	≈ 0	Contrainte - Radier de pont situé directement à l'amont					
2	Usine de Boissy-le-Châtel	1600	-					
3	Pontmoulin	1300	-					
4	Moulin de l'Arche	2300	-					
5	Moulin des Prés	1400	-					
6	Moulin Trochard	0	-					
7	Moulin de Coubertin	1030	Influence jusqu'à la confluence Grand Morin / Fausse rivière					
8	Clapet de Mouroux	2900	-					
9	Barrage de Pommeuse	1600	-					
10	La Billebauderie	900	-					
11	Moulin de Sainte-Anne	2500	-					
12	Moulin Guérard	500	-					
13	Moulin Bicheret	≈ 0	Chute résiduelle très faible					
14	Moulin de Génevray	≈ 0	Chute résiduelle très faible					
15	Moulin de Prémol	2900	-					
16	Moulin de Coude	≈ O	Contrainte - Radier de pont situé directement à l'amont					
17	Moulin de Tigeaux	3200	-					
18	Moulin de Serbonne	2000	-					
19	Moulin de la Chapelle	2100	-					
20	Barrage du Faubourg	1300	-					
21/22	Moulin Brûlé/Nicol	2200	-					
23/24	Moulin Guillaume/Martigny	1500	-					
25/26	Moulin Drevault/de la Sault	400	-					
27	Moulin de Misère	≈ 0	-					
28	Moulin Talmé	600	-					
29	Moulin de Quintejoie	1500	-					
30	Moulin de Liarry	≈ 0	Chute résiduelle très faible					
31	Porte à Bateaux	1700						

IV.3.3.3. Cartes de vitesse

Les cartes de vitesse en étiage et au module, avec ouvrages fermés et ouverts sont donnés en annexe.

Elles permettent de mettre en évidence les secteurs à très faible vitesse (en rouge) ainsi que l'augmentation de vitesses en amont des ouvrages lors de leur ouverture.

IV.3.3.4. Simulations de scénarios

Pour les différents débits de projet, plusieurs simulations ont été effectuées avec le modèle :

- D'une part en situation actuelle, l'ouverture de vannes actuellement bloquées (moulin de Serbonne, moulin de la Chapelle, etc.) a été simulée. Ces simulations permettent d'estimer notamment à l'étiage, la cote en amont des ouvrages et la chute résiduelle, qui n'a pas pu être estimée lors des campagnes d'ouverture d'ouvrage.
- D'autre part, pour certains ouvrages qui ne permettent pas la continuité piscicole, l'arasement des déversoirs a été simulé, à la cote du fond du lit de la rivière.

> Usine de Boissy

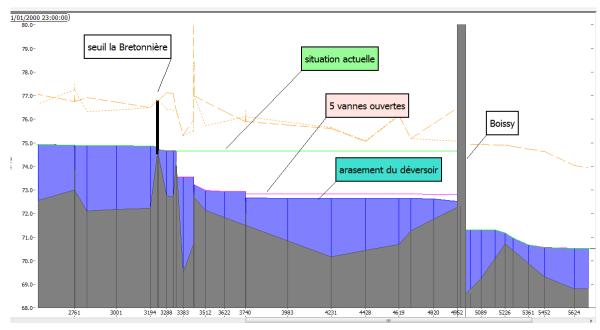
Deux simulations ont été réalisées sur le moulin de Boissy-le-Châtel. D'une part l'ouverture des vannes actuellement bloquée (5 vannes ouvertes au total au lieu de 3), puis d'autre part l'arasement des ouvrages.

Le tableau suivant donne les cotes d'eau pour les différents débits en amont de l'usine de Boissy-le-Châtel, avec ouverture de 3 vannes, puis avec ouverture de 5 vannes, c'est-à-dire en ouvrant les 2 vannes électriques actuellement bloquées.

Avec l'ouverture des deux vannes supplémentaires, en amont de l'usine de Boissy-le-Châtel, la ligne d'eau est abaissée d'une dizaine de cm en étiage par rapport à l'ouverture de 3 vannes et de 50 cm environ en crue.

Au niveau du seuil de la Bretonnière, l'impact est quasiment nul en étiage et au module et représente 15 cm en crue.

Tableau 34 : Cotes en amont de l'usine de Boissy-le-Châtel avec ouverture des 5 vannes


		Usine de Boissy- le-Châtel (cote amont)	La Bretonnière (cote aval)
	3 vannes ouvertes	72,92	73,60
Etiage	5 vannes ouvertes	72,81	73,57
	Delta (cm)	11	3
	3 vannes ouvertes	73,07	73,80
Module	5 vannes ouvertes	72,93	73,80
	Delta (cm)	14	0
	3 vannes ouvertes	74,72	75,44
Crue 2 ans	5 vannes ouvertes	74,16	75,35
ans	Delta (cm)	56	9
_	3 vannes ouvertes	75,07	75,94
Crue 5 ans	5 vannes ouvertes	74,55	75,79
alis	Delta (cm)	52	15
Crue 10 ans	3 vannes ouvertes	75,28	76,28
	5 vannes ouvertes	74,77	76,12
	Delta (cm)	51	16

L'arasement des ouvrages a été simulé sur 9,20 m (largeur des vannes) à la cote 72,30 (fond du lit amont). Il permet de réduire encore la ligne d'eau en amont de l'usine de Boissyle-Châtel (chute résiduelle de1,20 m en étiage pour une cote d'eau aval de 71,30).

Tableau 35 : Cotes en amont de l'usine de Boissy-le-Châtel avec arasement des ouvrages

		Usine de Boissy-le-Châtel (cote amont)
	3 vannes ouvertes	72,92
Etiage	arasement des ouvrages	72,50
	Delta (cm)	42
	3 vannes ouvertes	73,07
Module	arasement des ouvrages	72,63
	Delta (cm)	44
	3 vannes ouvertes	74,72
Crue 2 ans	arasement des ouvrages	73,84
ans	Delta (cm)	88
	3 vannes ouvertes	75,07
Crue 5 ans	arasement des ouvrages	74,26
ans	Delta (cm)	81
Crue 10 ans	3 vannes ouvertes	75,28
	arasement des ouvrages	74,51
	Delta (cm)	77

Le profil en long suivant donne la ligne d'eau en étiage en situation actuelle ouvrages fermés, avec toutes les vannes ouvertes puis avec l'arasement des vannes :

<u>Figure 50 : Profil en long en amont de l'usine de Boissy-le-Châtel avec ouverture des ouvrages et</u> arasement des ouvrages

> Moulin Saint Anne

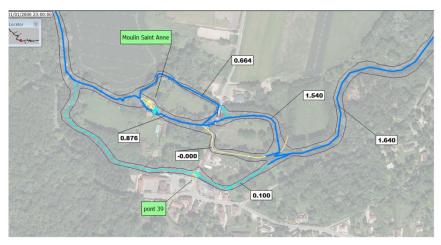
La chute actuelle au niveau du déversoir de Saint Anne est d'une quarantaine de centimètres en étiage et au module.

L'arasement du déversoir a été simulé à la cote 56,40 (cote de fond du lit aval) sur 8 m (larguer actuelle de l'échancrure), afin d'éliminer la chute.

L'abaissement de la ligne d'eau est de 26 cm à l'étiage et de 15 cm au module, avec un impact jusqu'à l'île située 900 m en amont du déversoir.

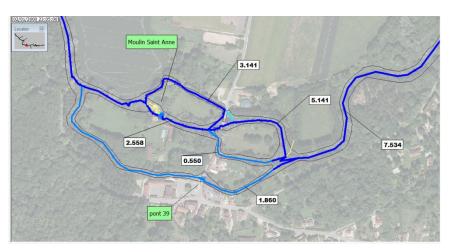
En crue, il n'y a pas de changement significatif par rapport à la situation actuelle. Les cotes obtenues sont les suivantes :

<u>Tableau 36 : Cotes en amont du déversoir du moulin de Saint-Anne avec arasement des ouvrages</u>


		Cote en amont du déversoir du moulin de Saint-Anne	
	avec déversoir	58,15	
Etiage	déversoir	57,89	
	delta (cm)	26	
	avec déversoir	58,50	
Module	déversoir	58,35	
	delta (cm)	15	
	avec déversoir	60,46	
Crue 2	déversoir	60,46	
ans	delta (cm)	0	
_	avec déversoir	61,19	
Crue 5 ans	déversoir	61,19	
alis	delta (cm)	0	
Crue 10 ans	avec déversoir	61,70	
	déversoir	61,69	
	delta (cm)	1	

Remarque : l'arasement du déversoir modifie la répartition des débits, et réduit le débit dans le bras gauche qui passe de 900 l/s à 100l/s en étiage et de 2.7 m³/s à 1.9 m³/s au module.

La répartition actuelle et simulé est donnée dans les figures suivantes :

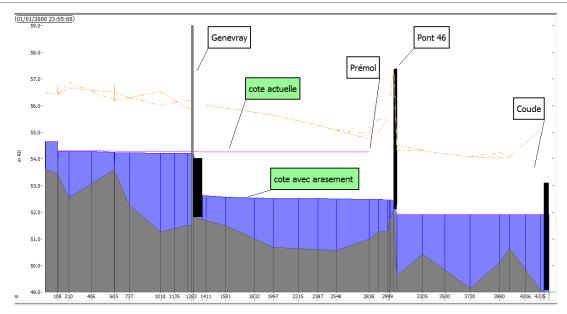

<u>Figure 51: Répartition des débits à Sainte-Anne en étiage – situation actuelle</u>

<u>Figure 52: Répartition des débits à Sainte-Anne en étiage – avec</u> arasement du déversoir

<u>Figure 53: Répartition des débits à Sainte-Anne au module – situation actuelle</u>

<u>Figure 54: Répartition des débits à Sainte-Anne au module – avec arasement du déversoir</u>

> Moulin de Prémol


La chute actuelle au niveau du déversoir de Prémol est importante, de l'ordre de 1,80 m en étiage et 1 m au module.

La simulation effectuée consiste en l'arasement complet des ouvrages, à la cote du fond du lit aval, soit 51,30.

L'abaissement est visible sur l'ensemble du bief. Ill représente 1,8m en étiage et 1,4 m au module. En crue, il n'y a pas de différence significative entre la situation actuelle et la situation avec arasement complet des ouvrages.

Tableau 37 : Cotes sur le bief de Prémol en situation actuelle, et avec arasement du déversoir

		Cote en amont du moulin de Prémol	Cote en aval du moulin de Génevray
	actuel	54,26	54,26
Etiage	arasement des ouvrages	52,49	52,62
	delta (cm)	177	164
	actuel	54,26	54,32
Module	arasement des ouvrages	52,89	53,36
	delta (cm)	137	96
	actuel	54,94	56,43
Crue 2 ans	arasement des ouvrages	54,94	56,43
	delta (cm)	0	0
	actuel	55,45	57,00
Crue 5 ans	arasement des ouvrages	55,45	57,00
	delta (cm)	0	0
Crue 10 ans	actuel	55,75	57,35
	arasement des ouvrages	55,75	57,35
	delta (cm)	0	0

<u>Figure 55 : Profil en long du bief de Prémol en situation actuelle et avec arasement des ouvrages à</u> l'étiage

> Moulin Tigeaux

L'arasement du déversoir de Tigeaux à la cote 48.60 (cote du fond du lit amont) a été modélisé.

Les cotes d'eau obtenues sont les suivantes :

<u>Tableau 38 : Cotes sur le bief de Tigeaux en situation actuelle, ouvrages ouverts et avec arasement du déversoir</u>

		Cote en amont de Tigeaux	Cote en aval de Coude
	vannes fermées (situation actuelle)	51,91	51,92
Etiage	vannes ouvertes	50,82	51,67
	arasement déversoir	50,03	51,67
	vannes fermées (situation actuelle)	51,34	52,03
Module	vannes ouvertes	51,91	52,00
	arasement déversoir	50,34	52,00
	vannes fermées (situation actuelle)	52,96	54,10
Crue 2 ans	vannes ouvertes	52,96	54,07
alis	arasement déversoir	52,87	54,04
_	vannes fermées (situation actuelle)	53,43	54,77
Crue 5 ans	vannes ouvertes	53,47	54,62
	arasement déversoir	53,40	54,59
Crue 10 ans	vannes fermées (situation actuelle)	53,81	54,98
	vannes ouvertes	53,81	54,98
	arasement déversoir	53,75	54,96

Ouverture des ouvrages

On constate un abaissement important de la ligne d'eau en étiage (110 cm) et au module (100 cm) par rapport à la situation actuelle lors de l'ouverture des vannes.

La chute est largement réduite avec l'ouverture de la vanne (une dizaine de cm en étiage et 40 cm au module)

Arasement du déversoir

Remarque : l'arasement à Tigeaux est simulé avec l'arasement simultané du moulin aval (Serbonne), ce qui explique que la cote en amont du moulin soit inférieure à la cote de 50.70 (cote aval actuelle à l'étiage)

L'arasement provoque un important abaissement de la ligne d'eau (80 cm en étiage et 60 cm au module) par rapport à l'ouverture des vannes.

En crue, l'abaissement est réduit, de l'ordre de 5 à 10 cm au niveau du moulin.

Le profil en long suivant montre l'abaissement de la ligne d'eau à l'étiage :

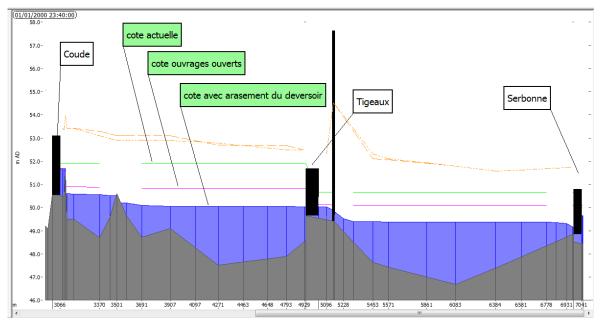


Figure 56 : Profil en long en amont de Tigeaux avec ouverture des ouvrages et arasement des ouvrages

> Moulin de Serbonne

La vanne du moulin de Serbonne étant bloquée, la ligne d'eau en amont est estimée à partir du modèle pour différents débits.

De plus, l'arasement du déversoir à la cote 48,90 (cote de fond du lit amont) est simulé

Les cotes d'eaux obtenues sur le bief sont les suivantes :

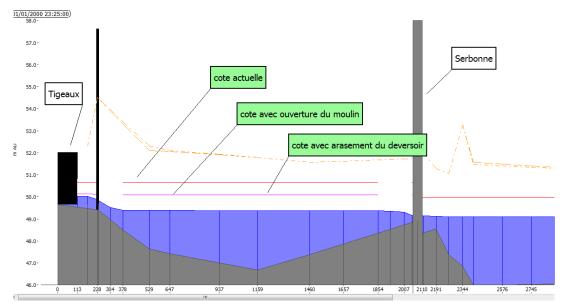
Tableau 39 : Simulation des cotes en amont de Serbonne

		Cote en amont de Serbonne	Cote en aval de Tigeaux
	vannes fermées (situation actuelle)	50,70	50,71
Etiage	vannes ouvertes	50,08	50,13
	arasement déversoir	49	50
	vannes fermées (situation actuelle)	50,90	50,97
Module	vannes ouvertes	50,56	50,76
	arasement déversoir	49	50
	vannes fermées (situation actuelle)	51,82	52,94
Crue 2 ans	vannes ouvertes	51,79	52,90
ano	arasement déversoir	52	53
	vannes fermées (situation actuelle)	52,29	53,57
Crue 5 ans	vannes ouvertes	52,20	53,43
ano	arasement déversoir	52	53
Crue 10 ans	vannes fermées (situation actuelle)	52,50	53,78
	vannes ouvertes	52,49	53,78
	arasement déversoir	52	54

Ouverture des ouvrages

On constate un abaissement important de la ligne d'eau en étiage (60 cm) et au module (30 cm) par rapport à la situation actuelle lors de l'ouverture des vannes.

L'ouverture de la vanne permet de réduire la chute en étiage à 8 cm (au lieu de 70 cm actuellement) et au module à 38 cm.


Arasement du déversoir

Remarque : l'arasement à Serbonne est simulé avec l'arasement simultané du moulin aval (moulin de la Chapelle), ce qui explique que la cote en amont du moulin soit inférieure à la cote de 50 (cote aval actuelle à l'étiage)

L'arasement provoque un important abaissement de la ligne d'eau (1,70 m en étiage et 1,90 m au module) par rapport à la situation actuelle sans ouverture de vanne. En crue, l'abaissement est de l'ordre de 50 cm au niveau du moulin.

Le profil en long suivant montre l'abaissement de la ligne d'eau à l'étiage :

<u>Figure 57: Profil en long du bief de Serbonne à l'étiage en situation actuelle, avec vanne ouverte et avec arasement du déversoir</u>

> Chapelle

La simulation suivante présente l'arasement du déversoir du moulin de la Chapelle à la cote 48,30 (cote du fond du lit amont). L'abaissement de la ligne d'eau est visible sur l'ensemble du bief jusqu'en aval de la Serbonne, avec un abaissement de 90 cm à l'étiage et de 75 cm au module.

En crue, l'abaissement est beaucoup plus faible, de l'ordre de 10 cm entre la situation actuelle et la situation sans déversoir.

Figure 58 : Profil en long du bief de la Chapelle à l'étiage

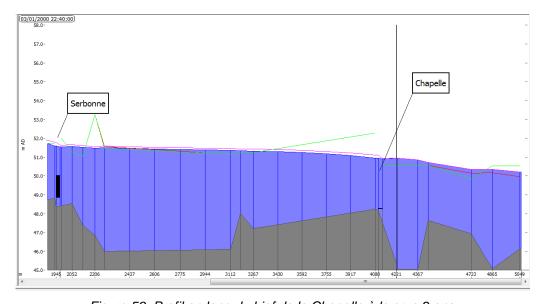


Figure 59: Profil en long du bief de la Chapelle à la crue 2 ans

Tableau 40 : Simulation des cotes en amont de la Chapelle

		cote en amont de la Chapelle		
	avec déversoir	50,00		
Etiage	sans déversoir	49,10		
	delta (cm)	90		
	avec déversoir	50,16		
Module	sans déversoir	49,40		
	delta (cm)	76		
0 0	avec déversoir	51,11		
Crue 2 ans	sans déversoir	50,96		
ans	delta (cm)	15		
0 -	avec déversoir	51,52		
Crue 5 ans	sans déversoir	51,40		
ans	delta (cm)	12		
0 40	avec déversoir	51,83		
Crue 10 ans	sans déversoir	51,71		
ans	delta (cm)	12		

> Moulin du Faubourg

L'ouverture de la vanne v2 du moulin du Faubourg en plus de la vanne v1 ne modifie que localement le niveau d'eau à l'étiage (10 cm) et au module (15 cm), mais ne modifie pas la répartition des débits au niveau de Crécy-la —Chapelle par rapport à l'utilisation d'une seule vanne.

> Moulin Guillaume

La simulation suivante présente l'arasement du déversoir du moulin Guillaume à la cote 45,30 (cote du fond du lit aval), sur une largeur de 30 m (le reste du déversoir restant à la cote actuelle. Les vannes attenantes au déversoir sont supprimées.

L'abaissement de la ligne d'eau est visible sur l'ensemble du bief jusqu'en aval du moulin Brûlé, avec un abaissement de 85 cm à l'étiage et de 144 cm au module.

En amont du bief, l'abaissement est respectivement de 30 cm et 80 cm pour l'étiage et le module.

Tableau 41 : Simulation des cotes sur le bief du moulin Guillaume

		Cote en amont du déversoir du moulin Guillaume	Cote en aval du moulin Brûlé
	avec déversoir	46,44	46,47
Etiage	déversoir	45,59	46,17
	delta (cm)	85	30
	avec déversoir	47,48	47,51
Module	déversoir	46,04	46,68
	delta (cm)	144	83
	avec déversoir	48,08	48,98
Crue 2 ans	déversoir	47,96	48,91
ans	delta (cm)	12	7
	avec déversoir	48,50	49,50
Crue 5 ans	déversoir	48,36	49,38
alis	delta (cm)	14	12
	avec déversoir	48,71	49,73
Crue 10 ans	déversoir	48,67	49,70
ans	delta (cm)	4	3

Le profil en long suivant montre l'abaissement de la ligne d'eau à l'étiage :

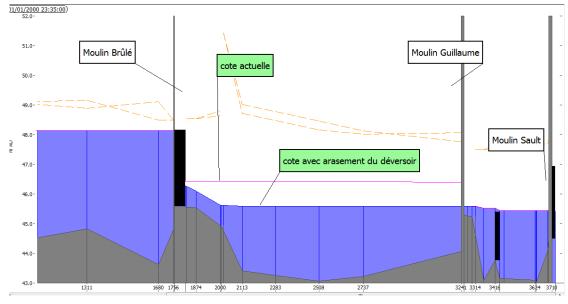


Figure 60 : Profil en long du bief du Moulin Guillaume à l'étiage

> Porte à Bateaux

La simulation suivante présente l'arasement des ouvrages de la Porte à bateaux. Le passage se fait sur 20 m à la cote 39,90 (cote fond du lit aval) et 22 m à la cote actuelle des déversoirs soit 41,25 m.

L'abaissement de la ligne d'eau est visible sur l'ensemble du bief jusqu'en aval du moulin de Liarry, avec un abaissement de 1 m à l'étiage et de 75 cm au module.

Pour la crue 2 ans, l'impact de l'abaissement est visible jusqu'en aval du moulin de Quintejoie.

Tableau 42 : Simulation des cotes sur le bief de la Porte à Bateaux

		Cote en amont de la Porte à Bateaux	Cote en aval de Liarry
	actuel	42,00	42,02
Etiage	arasement des ouvrages	41,01	41,94
	delta (cm)	99	8
	actuel	42,59	42,72
Module	arasement des ouvrages	41,84	42,35
	delta (cm)	75	37
	actuel	44,21	45,07
Crue 2 ans	arasement des ouvrages	43,72	44,87
ans	delta (cm)	49	20
	actuel	44,61	45,58
Crue 5 ans	arasement des ouvrages	44,15	45,39
ans	delta (cm)	46	19
0 40	actuel	45,22	46,08
Crue 10 ans	arasement des ouvrages	45,16	46,04
ans	delta (cm)	6	4

Les profils en longs des figures suivantes montrent les lignes d'eau en situation actuelle et avec arasement des ouvrages à l'étiage et pour la crue 2 ans.

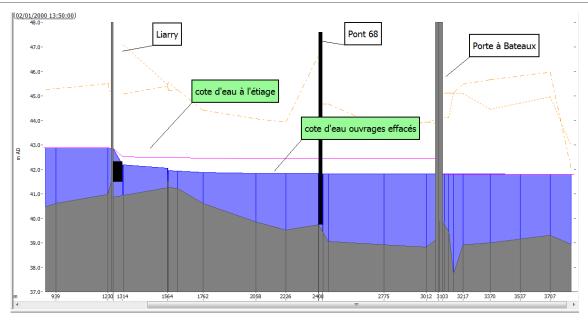


Figure 61: Profil en long du bief de la Porte à Bateaux - étiage

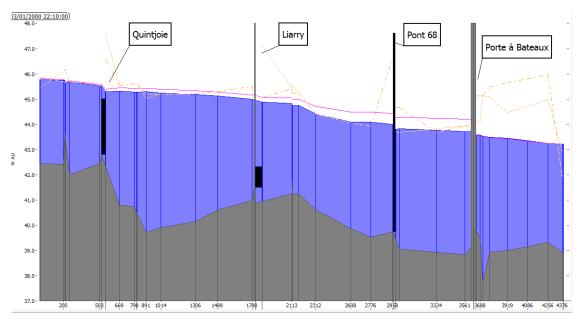


Figure 62: Profil en long du bief de la Porte à Bateaux - Crue 2 ans

Dans cette configuration, il n'y a plus de débit vers le bras gauche en étiage et un débit de $0.2~\text{m}^3/\text{s}$ au module.

V. FONCTIONNEMENT ECOLOGIQUE DE LA RIVIERE

V.1. ASPECT QUALITATIF

V.1.1. Cadre réglementaire

V.1.1.1. Direction Cadre européenne sur l'Eau

La Directive Cadre européenne sur l'Eau du 23 octobre 2000 (directive 2000/60) vise à donner une cohérence à l'ensemble de la législation avec une politique communautaire globale dans le domaine de l'eau. Elle définit un cadre pour la gestion et la protection des eaux par grand bassin hydrographique au plan européen avec une perspective de développement durable.

La DCE fixe des objectifs pour la préservation et la restauration de l'état des eaux superficielles (eaux douces et eaux côtières) et pour les eaux souterraines. L'objectif général est d'atteindre d'ici à 2015 le bon état des différents milieux sur tout le territoire européen.

Les grands principes de la DCE sont :

- une gestion par bassin versant;
- la fixation d'objectifs par « masse d'eau » ;
- une planification et une programmation avec une méthode de travail spécifique et des échéances ;
- une analyse économique des modalités de tarification de l'eau et une intégration des coûts environnementaux ;
- une consultation du public dans le but de renforcer la transparence de la politique de l'eau.

Pour l'atteinte du bon état des eaux de surface, deux définitions sont à considérer :

- l'état écologique des masses d'eau qui s'évalue sur la base de paramètres biologiques et physico-chimiques sous-tendant la biologie ;
- l'état chimique des masses d'eau, destiné à vérifier le respect des normes de qualité environnementales, qui ne prévoit que deux classes d'état : respect et non-respect. Les paramètres concernés sont les substances dangereuses (annexe IX de la DCE) et les substances prioritaires (annexe X de la DCE).

Le bon état des eaux de surface est atteint lorsque son état écologique ET chimique, sont au moins bons.

V112 SDAGE

Les deux masses d'eau superficielle qui concernent la zone d'étude sont libellées « Le Grand Morin de sa source au confluent de l'Aubetin (exclu) » et « Le Grand Morin du confluent de l'Aubetin (exclu) au confluent de la Marne (exclu) », et portent respectivement les codes masse d'eau FRHR149 et FRHR150.

Les objectifs d'état retenus par le nouveau SDAGE pour ces masses d'eau sont donnés dans le tableau suivant.

Tableau 43 : Synthèse des objectifs fixés par le SDAGE

	Le Grand Morin											
Linéaire (km)	Code de masse d'eau	Type masse d'eau	Statut	Objectif d'état écologique	Objectif d'état chimique	Objectif d'état global						
89,35	FRHR 149	P9	N1 (11	D // 1 0045		7000						
28,8	FRHR 150	M9	Naturelle	Bon état : 2015	Bon état : 2027							

A noter que le fonctionnement hydromorphologique, cf. partie VI, est un compartiment indissociable des paramètres biologiques et est donc un levier important pour l'atteinte du bon état écologique.

V.1.2. Données disponibles

Dans le cadre des politiques de gestion menées pour la préservation et la réhabilitation des masses d'eau, les réseaux d'observation représentent le principal moyen pour entretenir et développer le fond de connaissance sur les milieux aquatiques, connaître leur état et suivre leur évolution.

En 2007, le Réseau National de Bassin (RNB), qui constituait le principal réseau de mesures, a évolué pour devenir le Réseau de Contrôle de Surveillance (RCS) et intégrer dans ses objectifs la réponse aux exigences de la DCE.

Le RCS est destiné à assurer la connaissance patrimoniale de l'état général des eaux, via un réseau de sites pérennes sur lesquels des prélèvements sont réalisés mensuellement. Il apporte une information très ponctuelle (de un à quelques points sur les plus grandes rivières) mais permet de disposer d'un suivi des milieux aquatiques sur le long terme notamment pour évaluer les conséquences de modifications des conditions naturelles.

Il constitue une base de référence utile aux différents gestionnaires de l'eau pour orienter leur politique (Service de l'Etat, Agences de l'Eau, collectivités, etc.) et permet l'information du public sur l'état de santé des cours d'eau (bureaux d'études, universités, etc.).

En complément du RCS, il est mis en place un Réseau de Contrôle Opérationnel (RCO) qui a pour but de suivre en particulier les masses d'eau risquant de ne pas atteindre le bon état à l'échéance 2015 et d'évaluer l'efficacité des programmes de mesures sur celles-ci.

Parallèlement à ce système national, les Agences de l'Eau, les services de l'Etat et les collectivités territoriales se sont concertés pour développer des réseaux particuliers afin de mieux couvrir certaines portions du territoire, ce sont les Réseaux Complémentaires de Bassin (RCB). Avec une fréquence de mesure très faible, ces réseaux ont un statut très variable avec une maîtrise d'ouvrage répartie entre Agences de l'Eau et Collectivités Territoriales, et donc une hétérogénéité plus grande, au niveau national, que le RNB.

Cinq stations sont présentes sur le secteur d'étude, chacune ayant des données exploitables différentes :

Tableau 44 : Stations des réseaux d'observation sur la zone d'étude (source : DRIEE)

Identification	Localisation	Masse d'eau	Caractéristique	Réseau	Coordonnées (Lambert 93)
03117310	Saint-Rémy-la- Vanne	Grand Morin	1994 - 2006	RCO/RCB	X : 716 338 Y : 6 855 551
03118000	Pommeuse	Grand Morin	1994 – 2010	RCO/RCB	X : 701 022 Y : 6 857 536
03118300	Tigeaux	Grand Morin	2003 - 2010	RCS/RCO	X : 692 925 Y : 6 858 868
03119000	Montry	Grand Morin	1994 – 2010	RCO	X : 687 337 Y : 6 866 137
03120000	Pommeuse	Aubetin	2003 - 2010	RCO/RCB	X : 700 935 Y : 6 856 842

Les données brutes sont issues du site de la Direction Régionale et Interdépartementale de l'Environnement et de l'Energie Île-de-France (DRIEE), de l'Agence de l'Eau Seine Normandie (AESN) et de l'Office National de l'Eau et des Milieux Aquatiques (ONEMA).

Les résultats ont également été recoupés avec les informations fournies par le SAGE et le Schéma Directeur à Vocation Piscicole réalisé par la FDAAPPMA77 (SDVP).

V.1.3. Etat écologique des masses d'eau

V.1.3.1. Qualité biologique

D'après le classement défini par la DCE 200/60, le Grand Morin fait partie de l'hydroécoregion numéro 9 : Tables calcaires (HER niveau 1).

Ainsi, selon l'arrêté du 25 janvier 2010 relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface pris en application des articles R. 212-10, R. 212-11 et R. 212-18 du code de l'environnement, les objectifs de qualité par indice sont :

Tableau 45 : Classes d'état des différents indices biologiques

Classes d'état	Très bon	Bon	Moyen	Médiocre	Mauvais
IBGN	≥ 16	16 > x ≥ 14	14 > x ≥ 10	10 > x ≥ 6	< 6
IBD	≥ 17	17 > x ≥ 14,5	14,5 > x ≥ 10,5	10,5 > x ≥ 6	< 6
IPR	≤ 7	7 < x ≤ 16	16 < x ≤ 25	25 < x ≤ 36	> 36

a. Indice Biologique Global Normalisé (IBGN)

L'IBGN permet d'estimer la qualité du milieu en se basant sur le peuplement de macroinvertébrés et ainsi d'analyser la qualité hydrobiologique du milieu. Il constitue une information synthétique, exprimant l'aptitude d'un site d'eau courante au développement des invertébrés benthiques, toutes causes confondues. Traduisant à la fois les caractéristiques de l'eau et de l'habitat, il vise donc à caractériser les perturbations par leurs effets et non par leurs causes.

> Analyses du peuplement de macroinvertébrés

Les résultats de l'analyse du peuplement de macroinvertébrés sont présentés ci-dessous pour l'année 2010.

Station de Saint-Rémy-la-Vanne

Tableau 46 : IBGN du 10 août 2010 à Saint-Rémy-la-Vanne (source : données DRIEE puis traitées)

		•	N° Bocal	•	•	
	1	2	3	B1+B2	B1+B2+B3	
Abondance	512	1960	772	2472	3244	
Variété taxonomique	28	26	31	35	37	
Nombre de genre EPT	9	11	12	12	12	
Equivalent IBGN /20	16	Groupe inc	licateur /9 :	Variété tax	onomique :	
8 prélèvements	10	7/9 Glosso	somatidae	35		
Note du Cb2 (lv+ln) /20	12,98	lv /10		8,	14	
Note du CD2 (IV+III) /20	12,90	In	/10	4,	84	
Indice de Shannon			3,51			
Indice d'équitabilité /1			0,66			
Indice de dominance /1		0,17				
Note indicielle /20	17	Groupe inc	licateur /9 :	Variété tax	onomique :	
12 prélèvements		7/9 Glossosomatidae		3	37	

La note IBGN de 16/20 et la note indicielle de 17/20 illustrent une très bonne qualité biologique. Le groupe faunistique indicateur, représenté par la famille de trichoptères des Glossosomatidae, est de rang 7/9. Ce résultat dénote une qualité d'eau plutôt bonne qui est confirmée par le nombre important d'EPT (nombre de famille d'Ephéméroptères, Plécoptères et Trichoptères) avec 12 familles.

Néanmoins, avec 38 taxons inventoriés, la classe de variété de 11/14 est légèrement plus faible que sur la station de Pommeuse. Cet indicateur montre une qualité moyenne de l'habitat que le coefficient d'aptitude biogène vient confirmer.

<u>Figure 63 : Répartition des taxons selon leur ordre et leur régime alimentaire sur la station de Saint-Rémy-la-Vanne</u>

Concernant la distribution du peuplement, l'indice de Shannon, supérieur à 3, prouve une bonne diversité de la macrofaune benthique. L'indice de dominance faible et l'indice d'équitabilité proche de 1 (respectivement 0,17 et 0,66) traduisent un équilibre plutôt bon du peuplement de macroinvertébrés. La figure ci-dessus corrobore également ce résultat, avec une bonne répartition des macroinvertébrés sans dominance particulière d'un ordre ou d'un régime alimentaire.

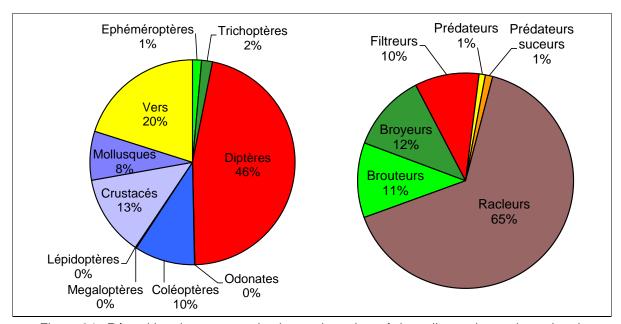

Station de Pommeuse

Tableau 47 : IBGN du 20 septembre 2010 à Pommeuse (source : données DRIEE puis traitées)

		•	N° Bocal		•	
	B1	B2	B3	B1+B2	B1+B2+B3	
Abondance	3893	6315	2341	10208	12549	
Variété taxonomique	31	31	28	39	41	
Nombre de genre EPT	6	9	7	10	11	
Equivalent IBGN /20	16	Groupe inc	Groupe indicateur /9 :		onomique :	
8 prélèvements	10	6/9 Lepido:	stomatidae	39		
Note du Cb2 (lv+ln) /20	13,86	lv /10		9,	02	
Note du CD2 (IV+III) /20	13,00	In /10		4,84		
Indice de Shannon			2,85			
Indice d'équitabilité /1			0,51			
Indice de dominance /1			0,24			
Note indicielle /20	17	Groupe inc	licateur /9 :	Variété tax	onomique :	
12 prélèvements		6/9 Lepido:	6/9 Lepidostomatidae		41	

La note IBGN de 16/20 et la note indicielle de 17/20 illustrent une très bonne qualité biologique. Le groupe faunistique indicateur, représenté par la famille de trichoptères des Lepidostomatidae, est de rang 6/9, démontrant une qualité d'eau plutôt préservée mais légèrement moins bonne que sur la station amont de Saint-Rémy-la-Vanne. Le nombre d'EPT (nombre de famille d'Ephéméroptères, Plécoptères et Trichoptères), avec 11 familles représentées, vient également conforter ce résultat.

Avec 42 taxons inventoriés, la classe de variété taxonomique est de 12/14 et démontre une bonne qualité de l'habitat que confirme le coefficient d'aptitude biogène.

<u>Figure 64 : Répartition des taxons selon leur ordre et leur régime alimentaire sur la station de Pommeuse</u>

Malgré une meilleure note indicielle, la distribution présente un indice de Shannon de 2,81, soit une diversité moyenne sur la station. L'indice de dominance faible (0,24) et l'indice d'équitabilité moyen de 0.51 traduisent également un équilibre moyen des macroinvertébrés. La figure ci-dessus montre que les diptères et dans une moindre mesure les oligochètes (vers) tendent à dominer sur les autres groupes. En effet, le taxon des Chironomidae, constituant la plus importante famille des diptères, représente 44 % de la faune prélevée. Concernant le régime alimentaire, le peuplement montre également une nette dominance

des taxons de type racleurs qui indique un milieu présentant une accumulation de débris organiques fins. Ce résultat est corrélé à la présence marquée des Chironomiade.

Le peuplement macrobenthique montre une dominance marquée, au contraire des deux autres stations qui est potentiellement la conséquence d'une dégradation de la qualité de l'eau.

Station de Tigeaux

Tableau 48 : IBGN du 3 septembre 2010 à Tigeaux (source : données DRIEE puis traitées)

		N° Bocal						
	1	2	3	B1+B2	B1+B2+B3			
Abondance	1271	561	1102	1832	2934			
Variété taxonomique	26	23	27	33	33			
Nombre de genre EPT	3	6	7	7	7			
Equivalent IBGN /20	15	Groupe inc	licateur /9 :	Variété tax	onomique :			
8 prélèvements	13	6/9 Ephemeridae		3	33			
Note du Cb2 (lv+ln) /20	12,1	lv /10		7,	26			
Note du CD2 (IV+III) /20	12, 1	ln /10		4,	84			
Indice de Shannon			3,70					
Indice d'équitabilité /1			0,67					
Indice de dominance /1			0,14					
Note indicielle /20	15	Groupe inc	licateur /9 :	Variété tax	onomique :			
12 prélèvements	.5	6/9 Ephemeridae		33				

La note IBGN et la note indicielle sont de 15/20. Cela traduit une bonne qualité biologique. Le groupe faunistique indicateur, représenté par les éphéméroptères « Ephemeridae » est de rang 6/9 et illustre une qualité d'eau plutôt préservée. La présence de seulement 7 familles comptant parmi les EPT (nombre de familles d'Ephéméroptères, Plécoptères et Trichoptères) renforce cette conclusion.

La classe de variété taxonomique est de rang 10/14 avec 33 taxons inventoriés. Cette richesse taxonomique est relativement bonne mais plus faible que sur les stations amont. Elle reflète une habitabilité moyenne de la station comme le montre également le coefficient d'aptitude biogène de 12,1.

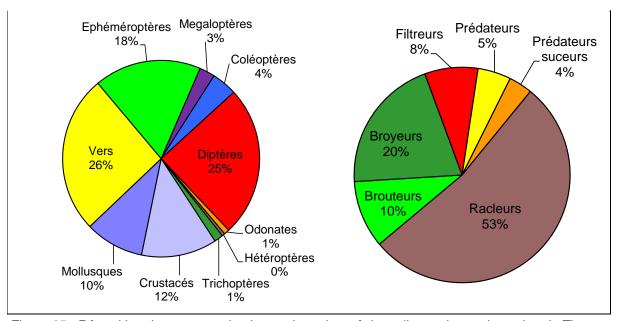


Figure 65 : Répartition des taxons selon leur ordre et leur régime alimentaire sur la station de Tigeaux

Au niveau du peuplement, l'indice de Shannon de 3,7 montre une bonne diversité sur la station. L'indice de dominance faible et l'indice d'équitabilité proche de 1 (respectivement 0,14 et 0,67) traduisent un bon équilibre du peuplement macrobenthique. La figure ci-dessus reflète également ce résultat bien que la distribution des macroinvertébrés soit assez proche de celle de la station de Pommeuse, i.e. une légère dominance des diptères et des vers qui se traduit par une majorité d'individus de type racleurs sur la station.

> Chronique de données

Tableau 49 : IBGN de 2005 à 2010 sur les masses d'eau étudiées (source : DRIEE)

		Année							
Masse d'eau	Localisation	2005	2006	2007	2008	2009	2010		
	Saint-Rémy-la-Vanne	16	17	18	16		16		
Grand Morin	Pommeuse	18	14	13			17		
	Tigeaux			16	17	18	15		
Aubetin	Pommeuse	_		15	16	17			

Depuis 2008, les IBGN sont bons à très bons sur le Grand Morin. La qualité semble stable depuis 2005 sur l'intégralité des stations, voire même en amélioration sur la station de Pommeuse. Au regard de ces indices, il n'existe pas de dégradation notable de la qualité biologique de l'amont à l'aval de la rivière. Cependant, l'analyse des données de l'année 2010 montre une qualité de l'eau mieux préservée à l'amont sur la station de Saint-Rémy-la-Vanne avec un Groupe Faunistique Indicateur plus intéressant.

La station sur l'Aubetin confirme également une bonne qualité hydrobiologique de cet affluent du Grand Morin.

La détermination de l'Indice Biologique Global Normalisé sur les stations du secteur d'étude semble indiquer un potentiel très intéressant du Grand Morin qui est à conforter à travers les autres indices.

b. Indice Biologique Diatomées (IBD)

Cet indice est basé sur le peuplement de diatomées, microalgues unicellulaires présentes dans tous les milieux aquatiques qui renseignent essentiellement sur la qualité de l'eau. Elles sont très sensibles aux polluants, notamment les formes de l'azote et du phosphore, et sont par ailleurs corrélés à la salinité. Les diatomées ont en effet une grande sensibilité à la qualité générale de l'eau mais sont relativement indifférentes quant à la qualité de l'habitat. L'indice a été calculé selon la Norme NFT 90-354.

Tableau 50 : IBD de 2005 à 2010 sur les masses d'eau étudiées (source : DRIEE)

		Année								
Masse d'eau	Localisation	2005	2006	2007	2008	2009	2010			
	Saint-Rémy-la-Vanne	15,7	15,1	15,0	15,1		15,0			
Grand Morin	Pommeuse	14,9	14,4	13,5		7,3	8,8			
	Tigeaux			14,9	15,1	15,1	14,8			
Aubetin	Pommeuse	15,6		15,4	15,5	14,9				

Depuis 2005, les IBD sont bons sur la majorité des stations et témoignent d'une qualité de l'eau préservée. Seule la station de Pommeuse montre une qualité passable à mauvaise de l'eau depuis 2006. Ce résultat peut s'expliquer par la présence de Coulommiers en amont. Les rejets urbains de ce type d'unité urbaine sont à l'origine d'un enrichissement des eaux en éléments nutritifs (azote et phosphore) qui est potentiellement la cause d'une dégradation de la qualité de la masse d'eau.

Principal affluent du Grand Morin au niveau de la commune de Pommeuse, l'Aubetin, d'après les IBD relevés, présente également une classe de bon état.

c. Indice Poisson Rivière (IPR)

Parallèlement à la mise en place du réseau hydrobiologique et piscicole, l'ONEMA a développé des outils d'évaluation de la qualité des peuplements piscicoles fondés sur la mesure de l'écart entre le peuplement observé et un peuplement de référence (pas ou peu de perturbation anthropique). L'IPR constitue le principal indice de ces outils.

> Analyse du peuplement piscicole

Station de Pommeuse

Aucune pêche électrique n'a été faite lors de l'étude. Néanmoins, les données brutes des pêches électriques de la station de Pommeuse (Grand Morin) sont disponibles sur le site Image de l'ONEMA.

En 2009, la pêche électrique a été réalisée sur un tronçon allant de l'ancien moulin de Pommeuse à l'amont jusqu'au pont de la D216 à l'aval. La largeur du lit mineur est en moyenne de 15 m et la longueur de la station est de 190 m. La prospection dite par « stratifiée par points » a été réalisée à pied.

Les données d'abondance relative, de densité, de masse et de biomasse sont calculées à partir des effectifs totaux. Le peuplement piscicole est dominé par les chabots, les loches franches et la vandoise qui voit sa population augmenter depuis 2007.

		2007			2008		2009		
Espèces	Effectif	Densité en nombre (ind. / 100 m²)	% de l'effectif	Effectif	Densité en nombre (ind. / 100 m²)	% de l'effectif	Effectif	Densité en nombre (ind. / 100 m²)	% de l'effectif
Anguille	12	1,3	2,8	5	0,5	3,7	4	0,4	0,9
Chabot	117	12,5	27,2	30	3,2	22,2	113	12,1	26,2
Chevaine	14	1,5	3,3	15	1,6	11,1	5	0,5	1,2
Epinochette	1	0,1	0,2	0	0,0	0,0	11	1,2	2,6
Goujon	0	0,0	0,0	9	1,0	6,7	2	0,2	0,5
Loche franche	232	24,7	54,0	38	4,1	28,1	87	9,3	20,2
Perche	0	0,0	0,0	1	0,1	0,7	0	0,0	0,0
Vairon	49	5,2	11,4	10	1,1	7,4	56	6,0	13,0
Vandoise	5	0,5	1,2	27	2,9	20,0	153	16,3	35,5
Total	430	45,9	100,0	135	14,4	100,0	431	46,0	100,0

Tableau 51 : Espèces capturées sur la station de Pommeuse depuis 2007 (source : ONEMA)

Le recensement de chabots, loches franches et vandoises montre une bonne dynamique du cours d'eau au niveau de la station. En effet, le tableau montre que la majorité des espèces présentes sur la station sont lithophiles, c'est-à-dire qu'elles se reproduisent sur des supports en gravier. Ces espèces, également dites rhéophiles, ont besoin de courants dynamiques qui entretiennent des substrats grossiers pour leur cycle de vie.

Cependant, ce peuplement, observé sur la station de Pommeuse n'est pas réellement représentatif du Grand Morin. En effet, le site présente un faciès courant et une végétation aquatique présente (nénuphar, rubanier, etc.) qui permet d'accueillir de nombreuses espèces en offrant une diversité d'habitats.

Les modifications des habitats induites par la présence d'ouvrages dans le lit mineur sont à l'origine d'un glissement typologique vers des espèces de cours plus calme.

A noter, avec 4 individus capturés en 2009, que l'anguille constitue une espèce retrouvée systématiquement. Cette espèce est concernée par un règlement européen qui impose des mesures de connaissance, de protection et de gestion. A ce titre, la France a rédigé un plan de gestion en 2008.

L'anguille est également classée en danger critique d'extinction en France dans la liste rouge de l'UICN (Union Internationale pour la Conservation de la Nature).

> Chronique de données

Tableau 52 : IPR depuis 2005 sur la zone d'étude (sources : DRIEE et ONEMA)

		Année						
Masse d'eau	Localisation	2005	2006	2007	2008	2009	2010	
Grand Morin	Pommeuse	19,29	11,54	16,13	11,81			
Giand Monn	Tigeaux	21,94	11,32	16,13	11,48	12,86	12,94	

Depuis 2008, les Indices Poisson Rivière calculés sur les stations de Pommeuse et Tigeaux atteignent l'objectif de bon état fixé pour la masse d'eau. Comme pour les autres indices hydrobiologiques, l'année 2007 présente des résultats qui déclassent le Grand Morin à l'état passable. Cependant, ce phénomène reste ponctuel et la qualité du Grand Morin, étudiée à travers les IPR, a évolué positivement depuis 2005 et semble se stabiliser vers le bon état.

d. Conclusion sur la qualité biologique

Tableau 53 : Synthèse de la qualité biologique des masses d'eau de la zone d'étude

					Anı	née		
Masse d'eau	Localisation	Paramètre	2005	2006	2007	2008	2009	2010
		IBGN	16,00	17,00	18,00	16,00		16,00
	Coint Démy la Vanna	IBD	15,70	15,10	15,00	15,10		15,00
Saint-Reiny	Saint-Rémy-la-Vanne	IPR						
Grand Morin		Qualité biologique						
- FRHR 149 Pommeuse	IBGN	18,00	14,00	13,00			17,00	
	Dommouse	IBD	14,90	14,40	13,50		7,30	8,80
	Pommeuse	IPR	19,29	11,54	16,13	11,81		
		Qualité biologique						
		IBGN			16,00	17,00	18,00	15,00
Grand Morin	Tigggung	IBD			14,90	15,10	15,10	14,80
- FRHR 150	Tigeaux	IPR	21,94	11,32	16,13	11,48	12,86	12,94
		Qualité biologique						
		IBGN			15,00	16,00	17,00	
Aubetin	Pommeuse	IBD	15,60		15,40	15,50	14,90	
Aubelin	romineuse	IPR						
		Qualité biologique						

Données manquantes dans l'agrégation

D'après les objectifs de qualité fixés par la DCE, la qualité biologique (en 2009 et 2010) est médiocre sur la partie amont du Grand Morin jusqu'à l'Aubetin (masse d'eau FRHR 149). Les indices calculés sur la station de Pommeuse, situé à l'aval de Coulommiers, sont à l'origine de ce déclassement. En effet, la traversée d'une telle agglomération est une cause probable de ce résultat avec une détérioration de la qualité de l'eau liée aux rejets urbains.

Concernant l'aval de la zone d'étude depuis la confluence avec l'Aubetin (masse d'eau FRHR 150), la qualité biologique est bonne. Les différents indices, comme sur l'amont de la zone d'étude, démontrent une habitabilité plutôt bonne. La qualité de l'eau semble également s'être améliorée au regard de la qualité biologique évaluée à Pommeuse.

A noter la bonne qualité de l'Aubetin depuis 2005, bilan à tempérer car il manque systématiquement des données dans l'agrégation.

Afin d'évaluer pleinement l'état écologique des masses d'eau, il est essentiel de déterminer l'état de chacun des éléments de qualité physico-chimique.

V.1.3.2. Qualité physico-chimique

Les paramètres physico-chimiques retenus et les objectifs de qualité respectifs sont ceux mentionnés dans l'arrêté du 25 janvier 2010 relatif aux méthodes et critères d'évaluation de l'état écologique, de l'état chimique et du potentiel écologique des eaux de surface pris en application des articles R. 212-10, R. 212-11 et R. 212-18 du code de l'environnement. Le code couleur utilisé dans les tableaux présentés dans cette partie correspond aux classes de qualité ci-dessous.

Tableau 54 : Classes d'état des différents indices physico-chimques

Très bon	Bon	Passable	Médiocre	Mauvais

a. Eléments physico-chimiques généraux

Selon la DCE, les éléments physico-chimiques généraux interviennent essentiellement comme facteurs explicatifs des conditions biologiques.

> Bilan de l'oxygène

Le bilan de l'oxygène correspond à l'agrégation de 4 paramètres : le Carbone Organique Dissous (COD), la Demande Biologique en Oxygène (DBO5), l'oxygène dissous (O2) et le taux de saturation en oxygène. Cette altération détermine la quantité de matières organiques et oxydables (MOOX) dont la dégradation par les micro-organismes est susceptible de consommer de l'oxygène dans les rivières, consommation néfaste pour la vie aquatique. Les MOOX proviennent aussi bien des rejets d'origine urbaine que des rejets d'origine agricole et industrielle.

Tableau 55 : Qualité physico-chimique du Grand Morin sur la zone d'étude vis-à-vis du bilan oxygène

					Anı	née		
Masse d'eau	Localisation	Paramètre	2005	2006	2007	2008	2009	2010
		Oxygène dissous (mg O ₂ /L)	7,67	8,67	8,89	9,50	9,70	9,10
		Taux de saturation en O2 (%)	72,60	80,60	90,10	93,00	96,00	90,00
	Saint-Rémy- la-Vanne	Demande biochimique en Oxygène (mg O ₂ /L)	4,20	1,60	1,10	3,50	2,40	2,40
		Carbone organique dissous (mg C /L)	1,70	3,20	4,50	2,98	2,27	3,05
Grand Morin		Bilan de l'oxygène						
- FRHR 149		Oxygène dissous (mg O ₂ /L)	5,82	5,77	7,38	7,40	8,20	6,40
		Taux de saturation en O2 (%)	56,60	56,50	74,60	72,00	77,00	69,00
	Pommeuse	Demande biochimique en Oxygène (mg O ₂ /L)	5,70	3,10	3,50	4,80	3,00	2,50
		Carbone organique dissous (mg C /L)	2,80	3,80	2,70	3,11	2,67	3,68
		Bilan de l'oxygène						
		Oxygène dissous (mg O ₂ /L)			7,92	7,50	7,80	5,00
		Taux de saturation en O2 (%)			76,30	71,00	76,00	59,00
	Tigeaux	Demande biochimique en Oxygène (mg O ₂ /L)			2,30	3,30	3,20	2,80
		Carbone organique dissous (mg C /L)			3,30	3,94	2,69	4,11
Grand Morin		Bilan de l'oxygène			0,00	0,01	2,00	1, 1 1
- FRHR 150		Oxygène dissous (mg O ₂ /L)	7,43	7,32	8,21	8,80	6,95	8,46
		Taux de saturation en O2 (%)	71,10	74,30	86,70	83,00	77,00	81,00
	Montry	Demande biochimique en Oxygène (mg O ₂ /L)	5,30	2,40		,	2,60	
		Carbone organique dissous (mg C /L)	3,00	4,40			2,40	
		Bilan de l'oxygène					, -	
		Oxygène dissous (mg O ₂ /L)	9,30		8,39	9,00	8,50	8,30
		Taux de saturation en O2 (%)	89,00		83,30	79,00	83,00	81,00
Aubetin	Pommeuse	Demande biochimique en Oxygène (mg O ₂ /L)	5,00		2,10	4,70	2,50	2,40
		Carbone organique dissous (mg C /L)	2,20		3,40	3,80	2,50	2,85
		Bilan de l'oxygène						

Données manquantes dans l'agrégation

Depuis ces dernières années et jusqu'en 2009, les stations du bassin du Grand Morin présentent un bon état vis-à-vis du bilan de l'oxygène. Cependant, en 2010, les stations de Pommeuse et de Tigeaux n'atteignent pas le bon état pour cette dégradation. Elles se situent respectivement à l'aval de Coulommiers et de la confluence avec l'Aubetin dont le bassin versant est à dominante agricole. Ces caractéristiques sont probablement à l'origine de ce déclassement concernant le bilan en oxygène. Le bon état est d'ailleurs retrouvé au niveau de la station de Montry, à l'aval de la zone d'étude.

Depuis 2005, la station du bassin de l'Aubetin présente un bon état vis-à-vis du bilan de l'oxygène.

Nutriments

L'ammonium, les nitrites, les nitrates, les orthophosphates (PO₄³-) et le phosphore total (Ptot) constituent les paramètres agrégés pour constituer l'altération nutriments. Ces pollutions par les nitrates proviennent des rejets directs urbains et industriels mais aussi des rejets agricoles plus diffus, par le lessivage des sols.

Le phosphore, nutriment végétal aussi essentiel que l'azote et présent en quantité limitée dans l'écosystème aquatique, participent au développement d'algues et de végétaux dans les cours d'eau. En excès, elles conduisent à l'eutrophisation de la rivière (prolifération d'algues et de végétaux supérieurs dans les eaux continentales). D'autres problématiques sont également à mentionner : les nitrates sont à l'origine de gênes concernant la production d'eau potable ou encore l'ammoniaque et les nitrites qui présentent des effets toxiques sur l'écosystème, notamment sur la faune piscicole.

<u>Tableau 56 : Qualité physico-chimique du Grand Morin sur la zone d'étude vis-à-vis du bilan</u> <u>nutriments</u>

					Anr	née		
Masse d'eau	Localisation	Paramètre	2005	2006	2007	2008	2009	2010
		Orthophosphates (mg PO ₄ ³⁻ /L)	0,98	0,64	0,46	0,48	0,38	0,33
		Phosphore total (mg P /L)	0,38	0,28	0,18	0,17	0,13	0,13
	Saint-Rémy-	Ammonium (mg NH ₄ +/L)	0,13	0,13	0,14	0,21	0,20	0,12
	la-Vanne	Nitrites (mg NO ₂ -/L)	0,15	0,18	0,20	0,25	0,16	0,14
		Nitrates (mg NO ₃ -/L)	34,70	43,50	51,00	34,80	33,50	44,40
Grand Morin		Nutriments						
- FRHR 149		Orthophosphates (mg PO ₄ ³⁻ /L)	1,24	0,87	0,76	0,62	0,63	0,80
		Phosphore total (mg P /L)	0,44	0,35	0,28	0,22	0,22	0,33
	Pommeuse	Ammonium (mg NH ₄ +/L)	0,97	0,81	0,67	1,27	0,95	0,89
	Formineuse	Nitrites (mg NO ₂ -/L)	1,19	1,34	0,97	1,54	0,62	1,35
		Nitrates (mg NO ₃ -/L)	35,50	52,50	59,00	34,50	33,50	48,20
		Nutriments						
		Orthophosphates (mg PO ₄ ³⁻ /L)			0,77	0,60	0,67	0,84
		Phosphore total (mg P /L)			0,26	0,23	0,22	0,30
	Tigeaux	Ammonium (mg NH ₄ +/L)			0,21	0,11	0,31	0,30
		Nitrites (mg NO ₂ -/L)			0,52	0,43	0,27	0,65
		Nitrates (mg NO ₃ -/L)			60,00	34,10	33,90	48,30
Grand Morin		Nutriments						
- FRHR 150		Orthophosphates (mg PO ₄ ³⁻ /L)	0,95	0,84			0,71	
		Phosphore total (mg P /L)	0,38	0,39			0,30	
	Montry	Ammonium (mg NH ₄ +/L)	0,36	0,38			0,24	
	Wioritry	Nitrites (mg NO ₂ -/L)	0,45	0,36			0,29	
		Nitrates (mg NO ₃ -/L)	37,70	56,80			40,00	
		Nutriments						
		Orthophosphates (mg PO ₄ ³⁻ /L)	0,46		0,55	0,57	0,54	0,46
		Phosphore total (mg P /L)	0,24		0,22	0,21	0,18	0,17
Aubetin	Pommeuse	Ammonium (mg NH ₄ +/L)	0,23		0,14	0,24	0,26	0,23
Aubeliil	i ommeuse	Nitrites (mg NO ₂ -/L)	0,30		0,31	0,28	0,23	0,29
		Nitrates (mg NO ₃ -/L)	38,00		64,00	36,10	38,00	53,80
		Nutriments	Α				Α	

Données manquantes dans l'agrégation
Paramètre Nitrate en état moins que bon
Assouplissement appliqué

Sur une majorité des stations de la zone d'étude, la qualité de l'eau du Grand Morin est dégradée concernant les nutriments. Globalement, on observe une altération de la qualité des eaux de l'amont vers l'aval. En effet, seule la station amont de Saint-Rémy-la-Vanne présente une bonne qualité physico-chimique depuis 2008. Sur les stations en aval, et notamment celle de Pommeuse, les concentrations mesurées montrent une qualité passable à mauvaise depuis 2005. Les matières phosphorées sont systématiquement à l'origine d'une qualité passable. La situation vis-à-vis des matières azotées est également critique, les nitrates dépassant souvent la limite du mauvais état sur la station de Pommeuse.

La zone d'étude se trouvant sur un bassin mixte (urbain et agricole), deux causes de ce constat sont possibles. Les teneurs observées peuvent être dues à la présence d'une zone urbaine située à proximité, un réseau d'assainissement défaillant ou inadapté (à l'origine d'un excès de nitrite issu de la réduction du nitrate et d'ammonium), ou à la forte proportion des surfaces agricoles sur le bassin versant, origine d'un lessivage des engrais.

Sur l'Aubetin, la concentration en nitrates est supérieure à la limite du bon état. Ce résultat s'explique par la dominance agricole du bassin versant. Néanmoins, mis à part le taux de nitrates élevé, les eaux superficielles provenant de l'Aubetin atteignent le bon état en 2010.

> Acidification et température

<u>Tableau 57 : Qualité physico-chimique du Grand Morin sur la zone d'étude vis-à-vis de l'acidification et de la température</u>

					Anr	née		
Masse d'eau	Localisation	Paramètre	2005	2006	2007	2008	2009	2010
		pH mini	7,75	7,70	7,60	7,85	7,85	7,80
	Saint-Rémy-	pH maxi	8,05	8,10	8,00	7,95	8,10	8,15
	la-Vanne	Acidification						
Grand Morin -		Température (°C)	15,60	16,30	15,90	16,00	16,00	15,70
FRHR 149		pH mini	7,75	7,85	7,78	7,90	7,80	7,85
	Pommeuse	pH maxi	8,15	8,20	8,10	8,40	8,15	8,25
	Pommeuse	Acidification						
		Température (°C)	19,10	20,90	17,40	18,70	18,70	18,10
	Tigeaux	pH mini			7,78	7,90	7,80	7,80
		pH maxi			8,20	8,40	8,15	8,20
		Acidification						
Grand Morin -		Température (°C)			18,90	18,50	18,70	17,70
FRHR 150		pH mini	7,80	8,00	7,90	8,00	7,85	7,20
	Montry	pH maxi	8,20	8,25	8,25	8,45	8,10	8,15
	Widnity	Acidification						
		Température (°C)	20,50	18,70	20,40	18,70	20,10	20,90
	_	pH mini	7,80		7,78	8,00	7,90	7,90
Aubetin	Pommeuse	pH maxi	8,10		8,30	8,50	8,20	8,30
Aubetiii	Follilleuse	Acidification						
		Température (°C)	16,80		16,00	17,60	16,40	16,50

Données manquantes dans l'agrégation

Depuis 2005, l'intégralité des stations montrent que le bon état vis-à-vis de l'acidification et de la température est atteint sur le bassin versant du Grand Morin et de l'Aubetin.

b. Polluants spécifiques

Les polluants spécifiques de l'état écologique sont au nombre de 9 :

- 4 métaux/métalloïdes (l'arsenic, le chrome, le cuivre et le zinc) ;
- 5 pesticides (le 2,4 D, le 2,4 MCPA, le chlortoluron, l'oxadiazon et le linuron).

L'état écologique vis-à-vis des polluants spécifiques est établi en comparaison à une norme de qualité environnementale (NQE) pour chacun des paramètres.

Les réseaux de mesure ayant évolué entre 2006 et 2008, les 9 substances n'ont pas été analysées sur toutes les stations. Ainsi les stations suivies en 2005 et 2006 ne l'ont été que pour les 5 molécules pesticides.

<u>Tableau 58 : Qualité physico-chimique du Grand Morin sur la zone d'étude vis-à-vis des polluants spécifiques</u>

					An	née		
Masse d'eau	Localisation	Paramètres	2005	2006	2007	2008	2009	2010
		Arsenic (μg/L)	n.a.	n.a.				
		Chrome (µg/L)	n.a.	n.a.				
		Cuivre (µg/L)	n.a.	n.a.				
	Online Diame	Zinc (µg/L)	n.a.	n.a.				
	Saint-Rémy- la-Vanne	2,4 D (μg/L)						
	la valile	2,4 MCPA (µg/L)						
		Chlortoluron (µg/L)						
		Oxadiazon (µg/L)						
Grand Morin	-	Linuron (μg/L)						
FRHR 149		Arsenic (μg/L)	n.a.	n.a.				
		Chrome (µg/L)	n.a.	n.a.				
		Cuivre (µg/L)	n.a.	n.a.				
		Zinc (µg/L)	n.a.	n.a.				
	Pommeuse	2,4 D (μg/L)						
		2,4 MCPA (µg/L)						
		Chlortoluron (µg/L)						
		Oxadiazon (µg/L)						
		Linuron (μg/L)						
		Arsenic (µg/L)	n.a.	n.a.				
		Chrome (µg/L)	n.a.	n.a.				
		Cuivre (µg/L)	n.a.	n.a.				
		Zinc (µg/L)	n.a.	n.a.				
Grand Morin FRHR 150	Montry	2,4 D (μg/L)						
FRIIN 130		2,4 MCPA (µg/L)						
		Chlortoluron (µg/L)						
		Oxadiazon (µg/L)						
		Linuron (μg/L)						
		Arsenic (µg/L)	n.a.	n.a.				
		Chrome (µg/L)	n.a.	n.a.				
		Cuivre (µg/L)	n.a.	n.a.				
		Zinc (μg/L)	n.a.	n.a.				
Aubetin	Pommeuse	2,4 D (µg/L)						
		2,4 MCPA (μg/L)						
		Chlortoluron (µg/L)						
		Oxadiazon (µg/L)						
		Linuron (µg/L)				1]	

n.a. non analysé

En 2005 et 2006, les masses d'eau du territoire respectent toutes le bon état pour ce paramètre. Cependant, les métaux n'ayant pas été analysés, ce résultat est à mitiger.

La qualité depuis 2007 n'a pas pu être estimée car les données concernant les polluants spécifiques ne sont pas disponibles. Les NQE et les méthodes d'analyse ayant été définis récemment, les données relatives aux polluants spécifiques seront probablement consolidées dans les années à venir.

c. Conclusion sur la qualité physico-chimique

Tableau 59 : Qualité physico-chimique du Grand Morin sur la zone d'étude

					Anı	née		
Masse d'eau	Localisation	Paramètres	2005	2006	2007	2008	2009	2010
		Bilan de l'oxygène						
		Nutriments						
	Saint-Rémy-	Acidification						
	la-Vanne	Température (°C)	15,60	16,30	15,90	16,00	16,00	15,70
		Polluants spécifiques						
Grand Morin		Qualité physico-chimique						
- FRHR 149		Bilan de l'oxygène						
		Nutriments						
	Pommeuse	Acidification						
	Formineuse	Température (°C)	19,10	20,90	17,40	18,70	18,70	18,10
		Polluants spécifiques						
		Qualité physico-chimique						
	Tigeaux	Bilan de l'oxygène						
		Nutriments						
		Acidification						
		Température (°C)			18,90	18,50	18,70	17,70
		Polluants spécifiques						
Grand Morin		Qualité physico-chimique						
- FRHR 150		Bilan de l'oxygène						
		Nutriments						
	Montry	Acidification						
	Wioritry	Température (°C)	20,50	18,70	20,40	18,70	20,10	20,90
		Polluants spécifiques						
		Qualité physico-chimique						
		Bilan de l'oxygène						
		Nutriments	Α				Α	
Aubetin	Pommeuse	Acidification						
710001111	. Sillilloudo	Température (°C)	16,80		16,00	17,60	16,40	16,50
		Polluants spécifiques						
		Qualité physico-chimique						

Données manquantes dans l'agrégation

A Assouplissement appliqué

Le tableau ci-dessus montre clairement une dégradation non négligeable du Grand Morin aval. En effet, sur la station amont de Saint-Rémy-la-Vanne, l'eau conserve une bonne qualité physico-chimique depuis 2008. Les stations en aval (et celle sur l'Aubetin) ne dépassent pas la classe de qualité passable depuis de nombreuses années. La station de Pommeuse, tout particulièrement, présente une dégradation très marquée depuis 2005, avec une qualité médiocre à mauvaise. La présence de matières phosphorées et azotées, probablement issues des rejets urbains et de l'activité agricole, est systématiquement à l'origine de ce déclassement.

V.1.3.3. Conclusion sur l'état écologique

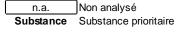
Tableau 60 : Synthèse de l'état écologique des masses d'eau de la zone d'étude

					Anı	née		
Masse d'eau	Localisation	Paramètres	2005	2006	2007	2008	2009	2010
	Onint Diana	Qualité biologique						
	Saint-Rémy- la-Vanne	Qualité physico-chimique						
	ia-vaille	Etat écologique						
Grand Morin - FRHR 149		Qualité biologique						
T KIIK 149	Pommeuse	Qualité physico-chimique						
		Etat écologique						
	Etat é	cologique de la masse d'eau						
	Tigeaux	Qualité biologique						
		Qualité physico-chimique						
		Etat écologique						
Grand Morin - FRHR 150		Qualité biologique						
T KIIK 130	Montry	Qualité physico-chimique						
		Etat écologique						
	Etat é	cologique de la masse d'eau						
		Qualité biologique						
	Pommeuse	Qualité physico-chimique						
Aubetin		Etat écologique						
	Etat é	cologique de la masse d'eau						

Données manquantes dans l'agrégation

L'atteinte du bon état écologique est estimée en fonction de l'état biologique et physicochimique. Une synthèse de l'état écologique peut être réalisée sur les stations des masses d'eau concernées par ce diagnostic. En 2010, le seuil de « bon état biologique » est atteint sur 1 des 5 stations, la station amont de Saint-Rémy-la-Vanne. L'état écologique n'est pas atteint pour le reste des stations de suivi, essentiellement à cause de la qualité physicochimique qui est détériorée par la dominance agricole du bassin versant et la présence de moyennes agglomérations sur la zone d'étude.

En prenant en compte la variabilité spatiale, les masses d'eau n'atteignent pas l'objectif d'atteinte du « bon état » fixé par la DCE pour 2015. Le manque de données dans l'agrégation accorde un niveau de confiance faible à ces résultats, des progrès sont à faire dans le recueil de données. La mise place d'une agriculture durable et environnementale et une amélioration de l'assainissement des grandes agglomérations permettront de recouvrer le bon état écologique du Grand Morin.


Néanmoins pour poursuivre ce diagnostic, l'état chimique a été diagnostiqué.


V.1.4. Etat chimique des masses d'eau

L'objectif du bon état chimique consiste à respecter les normes de qualité environnementales pour 41 substances définis dans la DCE. 33 substances prioritaires dont 13 prioritaires dangereuses. Ces substances sont essentiellement des phytosanitaires, des métaux et des HAP. Les données de l'année 2009 sont présentées ci-dessous.

Tableau 61 : Etat chimique du Grand Morin sur la zone d'étude en 2009

<u>rabieau 61 . Etat chimique du</u>	Station				
	Saint-Rémy- Ia-Vanne	Pommeuse	Tigeaux	Montry	
Alachlore (µg/L)					
Anthracène (μg/L)					
Atrazine (µg/L)					
Benzène (µg/L)	n.a.			n.a.	
Cadmium et composés (µg/L)	n.a.			n.a.	
Chlorfenvinphos (µg/L)					
Chloroalcanes C10-13 (µg/L)	n.a.			n.a.	
Chlorpyrifos (éthylchlorpyrifos) (µg/L)					
DDT total (µg/L)					
Para-para-DDT (µg/L)					
1,2-dichloroéthane (µg/L)	n.a.			n.a.	
Dichlorométhane (µg/L)	n.a.			n.a.	
Di(2-éthylhexyl)phtalate (DEHP) (μg/L)	n.a.			n.a.	
Diphényléthers bromés (µg/L)	n.a.	n.a.	n.a.	n.a.	
Diuron (μg/L)					
Endosulfan (µg/L)					
Fluoranthène (µg/L)					
Hexachlorobenzène (µg/L)					
Hexachlorobutadiène (µg/L)					
Hexachlorocyclohexane (µg/L)					
HAP - Benzo(a)pyrène (µg/L)					
HAP - Benzo(b)fluoranthène et					
Benzo(k)fluoranthène (µg/L)					
HAP - Benzo(g,h,i)perylène et Indeno(1,2,3-	•				
cd)pyrène (µg/L)					
Isoproturon (μg/L)					
Mercure et ses composés (μg/L)	n.a.			n.a.	
Naphtalène (μg/L)					
Nickel et ses composés (μg/L)	n.a.			n.a.	
Nonylphénol (4-nonylphénol) (µg/L)					
Octylphénol (4-(1,1',3,3'-tétraméthylbutyl)- phénol)) (µg/L)					
Pentachlorobenzène (μg/L)					
Pentachlorophénol (µg/L)					
Pesticides cyclodiènes (μg/L)					
Plomb et ses composés (µg/L)	n.a.			n.a.	
Simazine (µg/L)					
Tétrachloroéthylène (µg/L)	n.a.			n.a.	
Tétrachlorure de carbone (µg/L)	n.a.			n.a.	
Composés du tributylétain (tributylétain-	n c			r o	
cation) (µg/L)	n.a.			n.a.	
Trichlorobenzènes (µg/L)	n.a.			n.a.	
Trichloroéthylène (μg/L)	n.a.			n.a.	
Trichlorométhane (chloroforme) (µg/L)	n.a.			n.a.	
Trifluraline (μg/L)					
n.a.	Non analysé		Bon état		

Lors de la campagne de 2009, le bon état chimique n'est pas atteint sur les masses d'eau du secteur d'étude. En effet, des HAP, des phénols, des phtalates, du dichlorométhane et des pesticides (endrine) ont été retrouvés sur plusieurs stations du Grand Morin. L'évolution de l'amont à l'aval ne peut pas être évaluée car de nombreuses données ne sont pas disponibles à Saint-Rémy-la-Vanne et Montry (aucunes données sur l'Aubetin).

Les hydrocarbures aromatiques polycycliques (HAP), sont des composés organiques peu biodégradables très répandus dans l'environnement. Ils sont synthétisés lors de la formation des énergies fossiles et lors de la combustion incomplète de matières organiques. La présence de HAP dans les cours d'eau est en grande partie provoquée par le ruissellement d'eaux en provenance de zones urbaines ou industrielles. Les HAP peuvent provenir également de rejets d'industriels directement dans les eaux, des huiles usagées, et de l'industrie du pétrole.

Les **phtalates** sont un groupe de produits chimiques dérivés de l'acide phtalique. Couramment utilisés comme plastifiants des matières plastiques (en particulier du PVC, pour former par exemple des plastisols) pour les rendre souples, ils rentrent dans la composition du PET. Le **dichlorométhane**, solvant idéal par sa capacité à dissoudre de nombreux solvants organiques, est également utilisé par l'industrie chimique.

Enfin, l'**endrine** est un insecticide foliaire utilisé principalement sur les plantes de grande culture comme le coton et les céréales. Il a également été utilisé comme rodenticide pour lutter contre les souris et les campagnols.

Ces substances sont toxiques pour les organismes aquatiques et présentent un risque pour la santé humaine. L'arrêté préfectoral n°2010/DDEA/SEPR/186 porte d'ailleurs interdiction de consommation des anguilles péchées dans le département de la Seine-et-Marne en raison de la contamination en dioxine et PCB-DL dans les cours d'eau.

L'état des lieux du SAGE des Deux Morins, validé par la Commission Locale de l'Eau le 29 juin 2010, a permis de connaître l'évolution de la qualité chimique du Grand Morin depuis 2007. La classe du bon état est assortie d'un indice de confiance allant de « faible » à « élevé », attribué en fonction du nombre de substances effectivement analysées parmi les 41 substances caractérisant l'état chimique selon la DCE.

Année Masse Localisation 2007 2008 2009 **Paramètres** d'eau Saint-Rémy-Grand Morin Faible Faible Etat chimique Elevé la-Vanne - FRHR 149 Pommeuse Faible Etat chimique Elevé Elevé Elevé Grand Morin Tigeaux Etat chimique Elevé Elevé Elevé Faible - FRHR 150 Montry Etat chimique Elevé Aubetin Etat chimique Elevé Faible Pommeuse

Tableau 62 : Evolution de l'état chimique du Grand Morin sur la zone d'étude depuis 2007

En 2007 et 2008, hormis les HAP qui constituaient déjà un critère de déclassement de la qualité, le diuron et l'isoproturon dégradaient l'état chimique du Grand Morin. En 2009, aucun de ces deux pesticides n'a été retrouvé sur les stations. Cependant, le bon état chimique n'est que rarement atteint (Grand Morin –FRHR 149 en 2008). Ce constat peut s'expliquer par la présence d'industries (HAP, phtalates, etc.) sur la zone d'étude (Coulommiers) et la dominance de l'agriculture sur le bassin versant du Grand Morin (phytosanitaires).

La qualité des milieux et des habitats est également prise en compte afin de connaître la richesse et la diversité faunistique et floristique du Grand Morin.

V.2. QUALITE DES MILIEUX

V.2.1. Protection des patrimoines naturels

D'après le site Carmen du Ministère du Développement durable, on compte sur le territoire des communes de la zone d'étude :

- un ensemble de sites inscrits et un site classé à hauteur de Crécy-la-Chapelle ;
- un site d'importance communautaire (SIC) et une Zone de Protection Spéciale ;
- aucune protection réglementaire de type Arrêté de protection de biotope, ou réserve naturelle.

V.2.1.1. Sites classés et sites inscrits

Les sites classés sont des lieux dont le caractère exceptionnel justifie une protection de niveau national : éléments remarquables, lieux dont on souhaite conserver les vestiges ou la mémoire pour les événements qui s'y sont déroulés, etc..

L'inscription est une reconnaissance de la qualité d'un site justifiant une surveillance de son évolution, sous forme d'une consultation de l'architecte des Bâtiments de France sur les travaux qui y sont entrepris.

Tableau 63 : Sites classés et sites inscrits situés sur la zone d'étude (source : CARMEN)

Catégorie	Identification	Nom	Surface (ha)	Caractéristique
Site inscrit	6941	Vallée du Grand-Morin	329	Arrêté du 3 janvier 1980
Site classé	10000	Ensemble formé par la vallée du Grand Morin	3280	Arrêté du 28 mars 2007

V.2.1.2. Natura 2000

En 1979, les États membres de la Communauté européenne adoptaient la directive « Oiseaux », dont l'objectif est de protéger les milieux nécessaires à la reproduction et à la survie d'espèces d'oiseaux considérées comme rares ou menacées à l'échelle de l'Europe. Elle prévoit la désignation des sites les plus adaptés à la conservation de ces espèces en Zones de Protection Spéciale (ZPS).

En 1992, la directive « Habitats » vise à la préservation de la faune, de la flore et de leurs milieux de vie ; elle est venue compléter la directive « Oiseaux ». Il s'agit plus particulièrement de protéger les milieux et espèces (hormis les oiseaux déjà pris en compte) rares, remarquables ou représentatifs de la biodiversité européenne, listés dans la directive, en désignant des Zones Spéciales de Conservation (ZSC).

L'ensemble des ZPS et ZSC désignées en Europe constitue le réseau Natura 2000, dont l'objectif est de mettre en œuvre une gestion écologique des milieux remarquables en tenant compte des nécessités économiques, sociales et culturelles ou des particularités régionales et locales. Il s'agit de favoriser, par l'octroi d'aides financières nationales et européennes, des modes d'exploitation traditionnels et extensifs, ou de nouvelles pratiques, contribuant à l'entretien et à la préservation de ces milieux et de ces espèces.

Tableau 64 : Sites Nature 2000 à proximité de la zone d'étude (source : CARMEN)

Identification	Nom	Localisation	Surface (ha)	Caractéristiques
FR1102007	Le Vannetin de sa source à Choisy-en- Brie (ZSC)	Sud-Ouest de Coulommiers, localisé sur la rive gauche du Grand Morin d'une longueur de 20km linéaire.	61	Loche de rivière, Chabot, Lamproie de Planer
FR1112003	Boucles de la Marne (ZPS)	Nord-Est Esbly.	2641	252 espèces d'oiseaux

Des zones d'inventaire sont également définies dans le périmètre d'étude et sont présentées dans la partie suivante.

V.2.2. Faune – Flore

V.2.2.1. Données existantes

a. Espaces Naturels Sensibles (ENS)

Selon la loi du 18 juillet 1985, le Département a la compétence pour protéger des sites naturels qui présentent un intérêt pour la flore et la faune qu'ils abritent ou pour leurs caractéristiques paysagères ou esthétiques. Le classement d'un site en « ENS » a pour but de préserver la qualité des milieux naturels et paysages, et d'assurer la sauvegarde des habitats naturels du territoire en les protégeant d'une urbanisation accélérée ou d'une fréquentation touristique trop intensive.

La mise en place de cette politique passe par le droit de créer des zones de préemption afin d'acquérir les terrains des sites déterminés, puis d'élaborer et mettre en œuvre une politique de protection, de gestion et d'ouverture au public des espaces naturels sensibles. Le Conseil Général peut instaurer une taxe départementale des espaces naturels sensibles (TDENS) sur le droit à construire servant à l'acquisition des ENS, leur gestion et leur ouverture au public.

On compte 9 ENS en zone humide sur la zone d'étude, dont un est ouvert au public.

Tableau 65 : ENS situés sur la zone d'étude (Source : SAGE des deux Morins)

Identification	Localisation	Surface (ha)	Caractéristiques
Coteaux et bords du Morin	Mouroux	151,9	-
La collégiale	Crécy-la-Chapelle	1,97	Berges
Le Pré du Temple	Villiers-sur-Morin	8,61	Berges, vallée
Les petites montagnes	Voulangis	42,07	Berges, vallée
La frayère du marais	Crécy-la-Chapelle et Couilly- Pont-aux-Dames	0,71 et 6,5	Berges, vallées, zones humides, champs d'expansion de crues
Le petit pont	Couilly-Pont-aux-Dames	3,52	Berges, vallée
Le Prés de la Corvée	Saint-Germain-sur-Morin	4,78	Berges, vallée
Le prés de la Noue	Saint-Germain-sur-Morin	9,28	Berges, vallée
Le Grand Morin, canal de Chalifert	Esbly	14,92	Berges

b. Zones Naturelles d'Intérêt Ecologique, Faunistique et Floristique

L'inventaire ZNIEFF réalisé en 1982 à l'initiative du Ministère de l'Environnement avait permis de recenser la plupart des milieux naturels remarquables de par leur qualité écologique. La déclaration d'un secteur en ZNIEFF n'a pas de portée juridique au sens strict. Toutefois, les informations contenues dans l'inventaire doivent être prises en compte dans l'élaboration des documents de planification (POS, PLU, Schéma Directeur) ou dans les opérations d'aménagement. Ne pas tenir compte ou ignorer cet inventaire peut conduire à l'annulation d'une autorisation.

Deux ZNIEFF de type 2 concernent le secteur d'étude.

N° 77508021 : Forêt de Crécy (6876 ha). Vaste ensemble forestier dont les connaissances restent très fragmentaires, non seulement dans les secteurs privés mais aussi dans les parties domaniales. Elle inclut pour l'instant une seule ZNIEFF de type 1 (Etang de Guerlande). La ZNIEFF de type 1 de « la Petite Fortelle » ne serait plus justifiée (station non confirmée récemment de *Wahlenbergia hederacea* et *Lobelia urens* dans une propriété privée, éventuellement détruite par les travaux de la ligne TGV).

Des prospections complémentaires sont nécessaires sur l'ensemble du massif. Il est probable que des ZNIEFF de type 1 puissent être définies (zone humides dont ensemble de mares).

Lobélie brûlante (Lobelia urens)

N° 77234021: Vallée de la Marne de Coupvray à Pomponne (3609 ha). L'intérêt de la zone réside dans la présence d'un réseau de plans d'eau servant de halte migratoire et de lieu d'alimentation pour de nombreux oiseaux. Les milieux sont favorables au développement d'une flore remarquable. D'autre part, la géomorphologie permet d'avoir des milieux boisés de différente nature : sur plateau, sur coteau, parfois en milieu plus humide (boisement humide du marais de Lesches). La connexion de milieux ouverts et fermés apporte une richesse écologique au niveau des lisières.

Grenouille agile (Rana dalmatina)

c. Réservoir biologique

Au sens du 1 du l de l'article L. 214-17 du code de l'environnement, la définition d'un réservoir biologique est la suivante :

« cours d'eau , partie de cours d'eau ou canal qui comprend une ou plusieurs zones de reproduction ou d'habitat des espèces de phytoplanctons, de macrophytes et de phytobenthos, de faune benthique invertébrée ou d'ichtyofaune, et permettant leur répartition dans un ou plusieurs cours d'eau du bassin versant ».

Sur la vallée du Grand Morin, la partie aval de l'Aubetin et le ru du Vannetin sont classés en réservoir biologique.

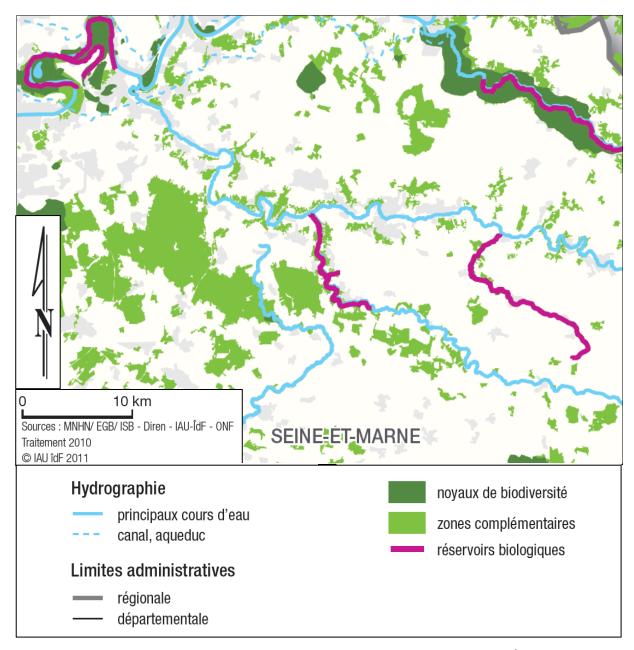


Figure 66 : Réservoirs biologiques dans la vallée du Grand Morin (source : IAU Île-de-France)

V.2.2.2. Observations

Les relevés de terrain ont été réalisés aux abords de la rivière du Grand Morin (fond du lit, berge, prairie et champ bordant le cours d'eau). Il n'a pas été réalisé en dehors de la périphérie de la rivière et n'est donc pas exhaustif.

a. Faune

Quelques observations ont été faites lors du parcours du linéaire, à pied ou en canoë. Le tableau ci-dessous liste les espèces rencontrées ainsi que le type de protection dont elles peuvent faire l'objet.

Tableau 66 : Faune observée durant la campagne de terrain de 2011

<u> </u>	Tableau oo . Faune observée durant la campagne de terrain de 2011							
Nom vernaculaire Nom latin		1*	2*	3*	4*	5*		
	Insectes							
Agrion éclatant	Calopteryx splendens							
Nymphe à cœur de feu	Pyrrhasoma							
	Amphibiens							
Grenouille verte	Rana esculenta	•	•					
Couleuvre à collier	Natrix natrix	•	•					
	Avifaune							
Martin-pêcheur	Alcedo atthis			•	•			
Héron cendré	Ardea cinerea			•				
Cormoran	Phalacrocorax carbo carbo			•				
Poule d'eau	Galinula tenebrosa					•		
Cygne	Cygnus cygnus			•	•			
Oie	Anser anser				•			
Pic vert	Picus viridis			•				
Bernache du Canada	Branta canadensis				•			
Canard Colvert	Anas platyrhnchos				•			
Perdrix Grise	Perdix perdix				•			
Geai des chênes	Garrulus glandarius							
Ragondin					Nuisible (Dep77)			
Rat musqué	Ondatra zibethicos	N	uisible	(Dep7	77)			
	Faune							
Ecureuil Roux	Sciurus vulgaris	• Mammifère protégé						
Chevreuil	Capreolus capreolus	•						

- 1* Convention de Berne
- 2* Amphibiens et reptiles protégés au niveau national
- 3* Liste des oiseaux protégés sur le territoire national (Arrêté du 29/10/2009)
- 4* Directive Oiseaux (79/409/CEE)
- 5* Directive Habitat Faune-Flore (92/43/CEE)

En termes d'espèces invasives dites nuisibles, quelques traces de **ragondins** et de **rats musqués** ont été observées sur le linéaire de la zone d'étude. Les terriers, creusés dans les berges, sont les principaux indices relevés.

Quelques individus ont été directement observés (photo ci-contre). Le ragondin, introduit au 19éme siècle pour sa fourrure, pose aujourd'hui des problèmes sanitaires puisqu'il est porteur d'une maladie parasitaire transmissible à l'homme, la leptospirose.

b. Flore

La campagne de terrain a permis de recenser 133 espèces floristiques (liste en annexe). Ce recensement permet de déduire les espèces végétales présentes en majorité sur les tronçons (tableau ci-dessous).

Tableau 67: Espèces végétales présentes majoritairement sur les tronçons

			Strate	Espèce	Pourcentage
				Ortie	97,7
Strate	Espèce	Pourcentage		Scrofulaire aquatique	95,3
	Aulne	100,0		Consoude	76,7
111	Frêne	74,4		Ronce	74,4
386	Erable	74,4		Graminées	72,1
ARBRE	Orme	48,8		Saponnaire	67,4
•	Robinier	27,9		Alliaire officinale	65,1
	Peuplier	25,6		Lierre grimpant	55,8
				Gaillet sp. (Gratron)	53,5
	Sureau noir	90,7		Bardane	51,2
Ш	Noisetier	55,8	ш	Compagnon rouge	51,2
LSU	Aubépine	51,2	₹	Renoncule sp. (Acre)	44,2
ARBUSTE	Clématite	46,5	НЕLОРНҮТЕ	Cirse des champs	41,9
₹	Cornouiller	30,2	2	Houblon	41,9
	Eglantier	25,6	出	Rumex	39,5
				Colza	34,9
				Berce	30,2
111	Rubanier	60,5		Lierre terrestre	30,2
Ę	Nénuphar	58,1		Morelle douce-amère	27,9
Ή	Potamot crispus	27,9		Barbarée vulgaris	25,6
ο	Potamot sp.	27,9		Carduus crispus	25,6
HYDROPHYTE	Callitriche	25,6		Herbe à robert	25,6
				Lycope d'Europe	25,6
				Salicaire	25,6

Espèces invasives

Parmi les 133 espèces recensées lors de la campagne de terrain, on compte 4 espèces dites invasives, à savoir : la renouée du Japon, le robinier faux-acacia, l'élodée de nuttall et l'érable negundo (photos ci-dessous).

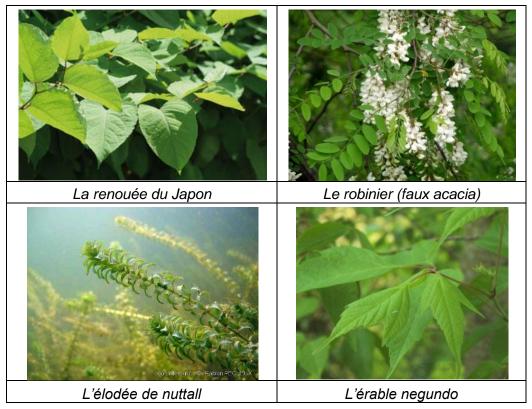


Figure 67 : Espèces invasives observées sur la zone d'étude

Le robinier montre une présence forte de 27.9% et la renouée du Japon de 20.9% sur le total des tronçons. La surface envahie a été relevée sur le terrain, portant généralement à des secteurs de 20 à 50 m² et occasionnellement à des zones de 300 à 1000 m² (cf atlas cartographique).

A noter que le Conservatoire Botanique National du Bassin Parisien (CBNBP) a recensé 12 espèces invasives sur le territoire du SAGE des 2 Morins depuis 10 ans.

Espèces patrimoniales

Aucune espèce patrimoniale n'a été recensée sur la zone d'étude.

Cependant, si l'essence de certains arbres reste commune dans le paysage biologique de la zone d'étude, certains individus possèdent une valeur patrimoniale importante. C'est le cas notamment du chêne et du saule trogne, témoins de pratiques culturales passées.

Figure 68 : Espèces patrimoniales observées sur la zone d'étude

Maladies

Plusieurs cas de Phytophtora ont été notés, sur des aulnes (*Phytophtora alni*) mais également sur de nombreux saules en sénescence. Il s'agit d'une maladie émergente, létale, à évolution rapide. Cette maladie a un impact fort sur l'écologie des cours d'eau étant donné l'importance de l'aulne glutineux dans la ripisylve.

Aujourd'hui, l'aulne est (avec l'orme) l'espèce la plus menacée dans les écosystèmes naturels européens. La maladie s'est largement répandue en une vingtaine d'années, menaçant un grand nombre de ripisylves. Le territoire de la zone d'étude ne fait pas exception puisqu'on retrouve des individus dans un état sanitaire médiocre sur la totalité des linéaires.

V.2.3. Peuplement piscicole

V.2.3.1. Indice de Potentialité Piscicole (IPP)

Cet indice a été élaboré par la fédération de pêche de Seine-et-Marne dans le cadre du SDVP. Il est calculé selon la qualité des berges, du lit mineur et des pressions sur le milieu. Il traduit les potentialités piscicoles du milieu en fonction des habitats présents sur le cours d'eau. L'IPP se traduit par une note de 0 à 20.

Le Grand Morin aval a été noté en classe « Orange » [5 à 10] sur tout le linéaire de la zone d'étude (SDVP 2010). Cette classe désigne une diversité faible d'habitats mais qui sont néanmoins favorables à l'accomplissement du cycle de vie de l'espèce cible, ici l'anguille et le brochet.

La faible note obtenue s'explique par des facteurs participant à la banalisation des habitats :

- le nombre élevé d'ouvrages sur le linéaire qui entravent le lit du cours d'eau, participant à une augmentation du taux d'étagement (paragraphe VI.3.1.) et accentuant le phénomène d'eutrophisation, et qui empêchent les espèces d'atteindre leur milieu de reproduction (glissement typologique des espèces);
- la qualité physico-chimique moyenne qui entraîne une dégradation de la qualité du milieu.

V.2.3.2. Espèces cibles

Les données piscicoles ont été présentées dans les chapitres précédents, permettant d'identifier un certain nombre d'espèces cibles au niveau de notre zone d'étude. Le tableau suivant présente les espèces en question d'après les pêches électriques ayant montré un IPR témoignant d'une bonne qualité.

Tableau 68 : Caractéristique des espèces cibles pour l'étude du peuplement piscicole

Espèce	Code	Typologie Huet	Biologie-écologie	Alimentation	Zone de frayère	Période de fraie
Chabot	СНА	Zone à truite	Eaux rapides oxygénées Vit entre les blocs, sous les pierres	Invertivore	Lithophile	Mars-avril
Chevesne	CHE	Zone à truite/ zone à brème	Fréquente piles de ponts, enrochements, branches mortes	Omnivore	Lithophile	Avril-juin
Vandoise	VAN	Zone à ombre	Eau limpide et courante	Omnivore	Lithophile	Avril-mai
Loche franche	LOF	Zone à truite	Eaux rapides oxygénées Vit entre les blocs, sous les pierres	Omnivore	Lithophile	Avril-mai
Vairon	VAI	Zone à truite	Eaux rapides oxygénées	Omnivore	Lithophile	Mai-juin

L'anguille fait également partie intégrante du peuplement considéré dans l'analyse du peuplement piscicole.

V.2.3.3. Zones de frayères

Une campagne de terrain a été réalisée afin de repérer les zones de frayères potentielles. Pour cela, des relevés ont été effectués concernant les zones de radiers et les herbiers aquatiques.

Les secteurs de radiers ou présentant un faciès de plat courant ont tout d'abord été recherchés. Le plus souvent associé à des fonds de type « cailloux – graviers » (rarement à des fonds sablonneux), ces zones bénéficient aux fraies des chabots, chevesnes, vandoises et loches franches. Au total, 53 radiers ont été recensés sur l'ensemble de la zone d'étude.

Puis, les secteurs présentant de la végétation en eaux peu profondes ont été recherchés. Ces zones sont particulièrement appréciées de la faune piscicole. Au niveau du Grand-Morin aval, 17 herbiers aquatiques ont été recensés. Ils se situent principalement au niveau de Coulommiers et dans la partie la plus aval.

Le cas de la frayère à brochets implantée sur une zone ENS en aval de Crécy-la-Chapelle, dont la connexion hydraulique se situe à 47,95 mNGF, montre une alimentation pour à partir d'une crue biennale (48 mNGF). La frayère doit cependant être alimentée annuellement par les hautes eaux.

Le linéaire de rivière sur la zone d'étude montre peu de frayères potentielles. En effet, le faciès majoritaire du Grand Morin reste profond et ne constitue pas un milieu de qualité pour la fraye.

V.2.3.4. Continuité

a. SDVP

Un diagnostic a été réalisé dans le cadre du Schéma Départemental de Vocation Piscicole (SDVP) par la Fédération de pêche de Seine-et-Marne. Il est présenté ci-dessous :

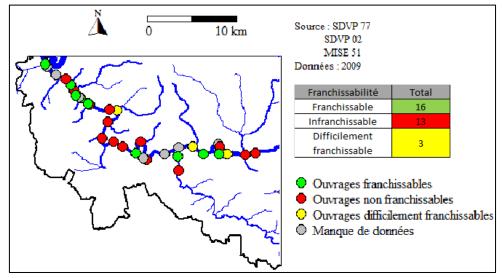


Figure 69 : Franchissabilité des ouvrages hydrauliques sur le Grand Morin aval

Ce diagnostic met en évidence que la continuité piscicole sur le Grand Morin aval est très altérée avec de nombreux ouvrages infranchissables sur le linéaire.

b. Potentialités de franchissement piscicole

Les capacités de nage des poissons, qui déterminent en partie leur aptitude à franchir un obstacle, dépendent non seulement de l'espèce, mais aussi et surtout de la taille du poisson et de facteurs abiotiques comme la température.

D'après la connaissance du contexte sur le Grand Morin depuis sa source (cours d'eau classé à migrateurs, réservoirs biologiques, etc.), l'espèce cible choisit est le **chabot** (*Cottus gobio*). En effet, c'est une espèce caractéristique d'accompagnement des espèces salmonicoles qui présente une capacité de franchissement médiocre. Ainsi, les critères à prendre en compte sont principalement :

- la hauteur de chute (< 15 cm);
- la présence d'une fosse d'appel au pied de l'obstacle ;
- une lame d'eau suffisante ;
- la vitesse du courant (< 1,5 m/s).

L'anguille (au stade juvénile de civelle et d'aiguillette) présente des capacités de nage très limitées, en termes de vitesse et d'endurance. Elle possède cependant des capacités de reptation sur des supports humides qui lui permettent de tirer parti de suintements sur des substrats rugueux ou revêtus de végétation pour franchir un obstacle.

La montaison et la dévalaison ont été évaluées sur tout le territoire d'étude selon trois cas de figure. Le cas 1 correspond à la situation actuelle du Grand Morin avec des niveaux d'eau régulés. Le cas 2 présente la franchissabilité lorsque les ouvrages d'un site sont ouverts (contrainte à l'aval) tandis que le cas 3 est le diagnostic réalisé lorsque tous les ouvrages sont ouverts (ouvrages aval également) et ne contraignent plus le Grand Morin.

A noter que deux classements différents ont été utilisés pour le chabot et l'anguille. Afin de rendre plus lisible le diagnostic sur toute la rivière, celui utilisé pour le chabot reprend les classes proposées dans l'état des lieux sur le Grand Morin amont réalisé par Hydrosphère pour le Syndicat Intercommunal de la Vallée du Haut Morin. Le classement proposé pour l'anguille est celui de P. Steinbach de l'ONEMA.

Tableau 69 : Franchissabilité (montaison/dévalaison) par ouvrage pour le chabot

	Montaison Dévalaison								
N°	Nom de l'ouvrage	PK (km)	Cas 1	Cas 2	Cas 3	Observations	Cas 1	Cas 2	Cas 3
1	La Bretonnière*	42,2				- Ouvrage effacé et donc franchissable sans difficultés lorsque les niveaux sont régulés			
	La Bretonniere	42,2		-		- Vitesse importante avec l'usine de Boissy ouverte → ouvrage franchissable avec retards et de légers risques de blessures			
2	Usine Boissyle Châtel	40,6			_	- Chute trop importante au niveau du déversoir → ouvrage totalement infranchissable			_
	Osine Boissy le Chalei	40,0				- Chute et vitesse trop importantes au niveau du passage des vannes → ouvrage franchissable temporairement avec retard			
3d	Pontmoulin* - Bras droit	39,1				- Pose de batardeaux lors de niveaux élevés avec des vitesses et une chute importante → ouvrage franchissable temporairement avec retard			
Ju	- Toriuriodiiri - Bras droit	33,1				- Chute effacée avec un niveau régulé au moulin de l'Arche → ouvrage franchissable sans difficultés			
4	Moulin de l'Arche	37,1				- Chute trop importante au niveau du déversoir et ouvrage infranchissable au niveau de la passe à canoës → ouvrage totalement infranchissable			
·	Wedin do 17 tone	0,,,				- Chute et vitesse légèrement trop importantes au niveau du passage des vannes → ouvrage sélectif			
5	Moulin des Prés	35,7			_	- Chute trop importante au niveau du déversoir et ouvrage infranchissable au niveau de la passe à canoës → ouvrage totalement infranchissable			_
						- Très faible chute résiduelle au niveau du passage des vannes → ouvrage franchissable sans difficultés			4
6	Moulin Trochard*	35,3		-	-	- Absence d'obstacle → ouvrage franchissable sans difficultés		-	-
3g	Pontmoulin* - Bras gauche	41,4		-		- Présence de 3 seuils sur le bras gauche en amont de la Fausse Rivière → ouvrages franchissables temporairement		-	
8a	Déversoir 1 - Fausse Rivière	34,8		-		- Chute trop importante et faible lame d'eau → <mark>ouvrage totalement infranchissable</mark>		-	
8b	Clapet Sucrerie - Fausse Rivière	34,3			_	- Chute trop importante au niveau du clapet → ouvrage totalement infranchissable			_
						- Chute résiduelle légèrement trop importante → ouvrage franchissable temporairement			4
8c	Déversoir 2 - Fausse Rivière	33,8		-	-	- Chute trop importante et faible lame d'eau → ouvrage totalement infranchissable		-	-
9	Moulin de Coubertin*	32,7		-		- Absence d'obstacle → ouvrage franchissable sans difficultés		<u> </u>	
10	Clapet de Mouroux	31			_	- Chute trop importante au niveau du clapet et ouvrage infranchissable au niveau de la passe à canoës → ouvrage totalement infranchissable			_
	<u> </u>					- Chute résiduelle légèrement trop importante → ouvrage franchissable temporairement			
11	Barrage de Pommeuse*	29,1		-	-	- Présence d'un seuil relativement important → ouvrage franchissable temporairement		<u> </u>	-
12	La Billebauderie*	27,6		-		- Absence d'obstacle → ouvrage franchissable sans difficultés		<u> </u>	
13a	Moulin Sainte-Anne - Bras gauche*	25			-	- Présence d'un seuil relativement important → ouvrage franchissable temporairement avec retard			<u> </u>
13b	Moulin Sainte-Anne - Bras central	25			-	- Chute et vitesse trop importantes au niveau du passage des vannes → ouvrage totalement infranchissable			<u> </u>
13c	Moulin Sainte-Anne - Bras droit	25			-	- Bras alimenté temporairement → ouvrage franchissable temporairement			-
14	Moulin Guérard*	22,5		-	-	- Absence d'obstacle → ouvrage franchissable sans difficultés		<u> </u>	-
15	Moulin Bicheret*	21,8		-	-	- Absence d'obstacle → ouvrage franchissable sans difficultés		-	-
16	Moulin de Génevray*	20,6		-		- Présence de seuils → ouvrage franchissable avec retards et de légers risques de blessures		<u> </u>	
17	Moulin de Prémol	18,3			_	- Chute trop importante et faible lame d'eau → ouvrage totalement infranchissable			_
						- Chute résiduelle et vitesses trop importantes au passage des vannes → ouvrage totalement infranchissable			
18	Moulin de Coude* 17	17		-		-Absence d'obstacle → ouvrage franchissable sans difficultés		-	
						-Apparition d'un seuil en aval avec l'ouverture du moulin de Tigeaux → ouvrage franchissable avec retards			
19	Moulin de Tigeaux	15,5			-	- Chute trop importante et faible lame d'eau → ouvrage totalement infranchissable			-
						- Chute résiduelle et vitesses légèrement trop importantes au passage des vannes → ouvrages franchissables temporairement			4
20	Moulin de Serbonne	13,4		-	-	- Chute trop importante et faible lame d'eau sur le déversoir → ouvrage totalement infranchissable		<u> </u>	-
21	Moulin de la Chapelle	11,3		-	-	- Chute trop importante et faible lame d'eau sur le déversoir → ouvrage totalement infranchissable		-	-
22	Barrage du Faubourg	10				- Chute trop importante et faible lame d'eau sur le déversoir → ouvrage totalement infranchissable			
						- Chute résiduelle et vitesses trop importantes au passage des vannes → ouvrages franchissables temporairement			
23	Moulin Jaune	7,8				- Chute trop importante et faible lame d'eau → ouvrage totalement infranchissable			
		<u> </u>				- Faible chute résiduelle au niveau du passage des vannes → ouvrage franchissable sans difficultés			
24	Moulin Guillaume	6,4				- Chute trop importante et faible lame d'eau sur le déversoir → ouvrage totalement infranchissable			
0.5						- Chute résiduelle et vitesses trop importantes au passage des vannes → ouvrages franchissables temporairement			
25	Moulin de la Sault	6	-		-	- Lame d'eau légèrement trop petite en basses eaux → ouvrage franchissable avec retards	-		-
26	Moulin de Misère*	5,4		-	-	- Absence d'obstacle → ouvrage franchissable sans difficultés		<u> </u>	-
27	Moulin Talmé*	4,4		-		- Ouvrage effacé et donc franchissable sans difficultés lorsque les niveaux sont régulés		-	
						- Vitesse et chute légèrement trop importantes avec le moulin de Quintejoie ouvert → ouvrage franchissable avec retards et de légers risques de blessures			
28	Moulin Quintejoie	3,8			-	- Chute trop importante et faible lame d'eau sur le déversoir → ouvrage totalement infranchissable			-
	•					- Très faible chute résiduelle au niveau du passage des vannes → ouvrage franchissable sans difficultés			
29	Moulin Liarry*	2,5		- Présence de seuils → ouvrage franchissable avec retards et de légers risques de blessures					
30	Porte à bateaux	0,8			-	- Chute trop importante et faible lame d'eau sur le déversoir → ouvrage totalement infranchissable			-
0.4						- Chute résiduelle et vitesses trop importantes au passage des vannes → ouvrages franchissables temporairement			4
31	Bras gauche	0,5	///////			- Chute résiduelle trop importante au passage des vannes → ouvrage franchissable temporairement			· · ·
-	Confluence Marne	0		X////////	<u> </u>		<i>X////////</i>	<u> </u>	<u>X////////</u>

Moulin effacé ou démantelé

Permanente sans retard ni préjudices sur l'état de santé : la configuration de l'ouvrage et les débits permettent le franchissement de l'obstacle sans blessures ou retard

Permanente avec retard ou préjudices sur l'état de santé : la configuration de l'ouvrage et les débits permettent le franchissement de l'obstacle mais peuvent occasionner des blessures ou des retards

Partielle seulement quelques individus : l'obstacle est dit sélectif, seuls quelques individus en meilleurs conditions peuvent franchir l'obstacle

Temporaire sans retard ni préjudices sur l'état de santé : l'ouvrage n'est franchissable que lorsque les niveaux d'eau sont élevés

Temporaire avec retard ou préjudices sur l'état de santé : l'ouvrage n'est franchissable que lorsque les niveaux d'eau sont élevés mais la configuration du site rend la franchissabilité sélective ou pouvant occasionner des blessures Totalement infranchissable : l'ouvrage est infranchissable en toute période

Rq: Ce tableau présente uniquement l'état des lieux quant à la continuité piscicole. La continuité sédimentaire, second volet de la continuité écologique, est traitée dans le volet hydromorphologique, cf. partie VI.

Tableau 70 : Franchissabilité (montaison/dévalaison) par ouvrage pour les anguilles

						Montaison Montaison		évalais	on
N°	Nom de l'ouvrage	PK (km)	Cas 1	Cas 2	Cas 3	Observations	Cas 1	Cas 2	Cas 3
1	La Bretonnière*	42,2		_		Ouvrage effacé lorsque les niveaux sont régulés → absence d'obstacle		-	
		,-				parition, avec l'ouverture de l'usine de Boissy, d'un seuil en pente douce et présentant unebonne rugosité → ouvrage franchissable sans difficulté			
2	Usine Boissyle Châtel	40.6			-	- Chute importante, rupture de pente et rugosité très faible → très difficilement franchissable			-
						- Vitesse importante au niveau du passage des vannes et rugosité faible → franchissable avec retard			
3d	Pontmoulin* - Bras droit 39,1			- Ouvrage effacé lorsque les niveaux sont régulés → absence d'obstacle					
		· ·				- Apparition, avec l'ouverture du moulin de l'Arche, d'un seuil en pente douce et sans aucune rugosité → franchissable avec retard			
4	Moulin de l'Arche	37,1				- Chute importante, rupture de pente et rugosité faible → difficilement franchissable			
		+ -				- Vitesse importante au niveau du passage des vannes → ouvrage franchissable sans difficulté			
5	Moulin des Prés	35,7			-	- Chute importante, rupture de pente et rugosité moyenne → franchissable avec retard			-
	Marrilla Tarahand*	05.0				- Très faible chute résiduelle et vitesse moyenne au niveau du passage des vannes → absence d'obstacle			4
6	Moulin Trochard*	35,3		-	-	- Absence de seuils résiduel → absence d'obstacle		-	-
3g	Pontmoulin* - Bras gauche	41,4		-		- Présence de 3 seuils avec une bonne rugosité sur le bras gauche en amont de la Fausse Rivière → ouvrage franchissable sans difficulté		-	
8a	Déversoir 1 - Fausse Rivière	34,8				- Chute importante, rupture de pente et rugosité très faible → très difficilement franchissable			
8b	Clapet Sucrerie - Fausse Rivière	34,3			-	- Chute importante, rupture de pente et rugosité très faible - très difficilement franchissable			-
0.0	Déversoir 2 - Fausse Rivière	22.0				- Faible chute résiduelle et rugosité moyenne → ouvrage franchissable sans difficulté			4
8c		33,8		-	-	- Chute importante, pente douce et existence d'une autre voie (berge) → franchissable avec retard		-	-
9	Moulin de Coubertin*	32,7		-		- Absence de seuils résiduel → absence d'obstacle Chute importante, parte deurs et suistance d'une outre unic (horre) (horre) (horre)		-	
10	Clapet de Mouroux	31			-	- Chute importante, pente douce et existence d'une autre voie (berge) → franchissable avec retard			-
11	Davraga da Dammayas*	20.4				- Faible chute résiduelle et rugosité moyenne → ouvrage franchissable sans difficulté			4
11	Barrage de Pommeuse* La Billebauderie*	29,1		-	-	- Présence de seuils résiduels → ouvrage franchissable sans difficulté		-	-
12		27,6		-		- Absence de seuils résiduel → absence d'obstacle		-	
13a	Moulin Sainte-Anne - Bras gauche*	25			-	- Présence de seuils résiduels → ouvrage franchissable sans difficulté			
13b	Moulin Sainte-Anne - Bras central	25			-	- Chute et vitesse importantes, pente douce et existence d'une autre voie (berge) → franchissable avec retard			<u> </u>
13c	Moulin Sainte-Anne - Bras droit	25			-	- Bras alimenté temporairement → franchissable avec retard			4 -
14	Moulin Guérard*	22,5		-	-	- Absence de seuils résiduel → absence d'obstacle		-	-
15	Moulin Bicheret*	21,8		-	-	- Absence de seuils résiduel → absence d'obstacle		-	-
16	Moulin de Génevray*	20,6		-		- Présence de seuils résiduels → ouvrage franchissable sans difficulté		-	
17	Moulin de Prémol	18,3			-	- Chute importante, rupture de pente, rugosité moyenne et existence d'une autre voie (berge) → difficilement franchissable			-
40	M. P. L. O. L.*	17				- Vitesse importante au niveau du passage des vannes → franchissable avec retard			
18	Moulin de Coude*	17		-		- Absence de seuils résiduel → Absence d'obstacle		-	
19	Moulin de Tigeaux	15,5			-	- Chute importante, rupture de pente, rugosité moyenne et existence d'une autre voie (berge) → difficilement franchissable			-
	M. P. J. O. J.	40.4				- Vitesse importante au niveau du passage des vannes → franchissable avec retard			4
20	Moulin de Serbonne	13,4		-	-	- Chute importante, rupture de pente, rugosité moyenne et existence d'une autre voie (berge) → difficilement franchissable		-	-
21	Moulin de la Chapelle	11,3		-		- Chute importante, rupture de pente, rugosité moyenne et existence d'une autre voie (berge) → difficilement franchissable		-	
22	Barrage du Faubourg	10				- Chute importante, rupture de pente, rugosité moyenne et existence d'une autre voie (berge) → difficilement franchissable			
						- Vitesse importante au niveau du passage des vannes → franchissable avec retard			
23	Moulin Jaune	7,8				- Chute importante, rupture de pente, rugosité moyenne et existence d'une autre voie (berge) → difficilement franchissable			
						- Vitesse moyenne au niveau du passage des vannes → ouvrage franchissable sans difficulté			
24	Moulin Guillaume	6,4				- Chute importante, rupture de pente, rugosité moyenne et existence d'une autre voie (berge) → difficilement franchissable			
						- Vitesse moyenne au niveau du passage des vannes → ouvrage franchissable sans difficulté			
25	Moulin de la Sault	6	-		-	- Vitesse et rugosité moyennes au niveau du passage des vannes → ouvrage franchissable sans difficulté	-		4
26	Moulin de Misère*	5,4		-	-	- Absence de seuils résiduel → absence d'obstacle		-	-
27	Moulin Talmé*	4,4		-		- Absence de seuils résiduel → absence d'obstacle		-	
28	Moulin Quintejoie	3,8			-	- Chute importante, pente douce et existence d'une autre voie (berge) → franchissable avec retard			-
	<u> </u>					- Faible chute résiduelle et rugosité moyenne → ouvrage franchissable sans difficulté			
29	Moulin Liarry*	2,5		-		- Présence de seuils résiduels → ouvrage franchissable sans difficulté		-	
30	Porte à bateaux	0,8			-	- Chute et vitesse importantes, pente douce et existence d'une autre voie (berge) → franchissable avec retard			4
31	Bras gauche	0,5	00000	- 0///////	- 	- Chute importanteet existence d'une autre voie (berge) → franchissable avec retard		(//////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
لـــًــا	Confluence Marne	0		XIIIIIII	X/////////				X////////

* Moulin effacé ou démantelé

Absence d'obstacle

Franchissable sans difficulté apparente

Franchissable mais avec retard

Difficilement franchissable

Très difficilement franchissable

Obstacle infranchissable

Rq: Ce tableau présente uniquement l'état des lieux quant à la continuité piscicole. La continuité sédimentaire, second volet de la continuité écologique, est traitée dans le volet hydromorphologique, cf. partie VI.

V.2.3.5. Repeuplement

Des repeuplements sont effectués par des associations de pêche locales, notamment l'AAPPMA de Crécy la Chapelle. Le nombre d'individus réintroduits est présenté dans le tableau ci-dessous.

Tableau 71 : Bilan des espèces introduites en 2009 et 2010 par l'APPMA de Crécy :

Repeuplement						
2009	2010					
400 brochetons	Gardons, tanches, truites					
1000 ombres communes	arc-en-ciel					
3500 truites fario						
Gardons, sandres, carpes, perches, tanches	1000 truites fario					

A noter que l'apport de truites sur la rivière du Grand Morin semble inapproprié. En effet, le faciès profond lentique représente 80% de la zone d'étude, avec une oxygénation insuffisante pour un développement à long terme des truites. De plus, les alevins de truites sont vulnérables car victimes de la prédation importante du chabot.

V.2.4. Lit mineur

V.2.4.1. Faciès d'écoulement

Un faciès d'écoulement est une portion de cours d'eau présentant une physionomie générale homogène sur le plan des hauteurs d'eau, de la vitesse, des profils en long et en travers. Les classes proposées sont adaptées de la classification de Malavoi.

Tableau 72 : Faciès d'écoulement d'après Malavoi

Hauteur d'eau	Vitesse d'écoulement	Profil en travers	Profil en long	Faciès
		a uma étui au ua	souvent en amont d'un obstacle (amont d'un ouvrage par exemple)	PROFOND LENTIQUE
		symétrique	en pied de cascade ou de chute	FOSSE DE DISSIPATION
> 70 cm	< 30 cm/s		dans une concavité de méandre	MOUILLE DE CONCAVITE
		asymétrique	le long d'un obstacle à l'écoulement (pile de pont, embâcle,)	FOSSE D'AFFOUILLEMENT
	> 30 cm/s	symétrique	pas de situation particulière	PROFOND COURANT
	< 30 cm/s	symétrique	souvent en amont d'un obstacle	PLAT LENTIQUE
			pente douce, écoulement uniforme	PLAT COURANT
< 70 cm	> 30 cm/s	symétrique	pente plus forte, turbulences liées à l'affleurement du substrat	RADIER
			pente très forte, turbulences avec écume blanche	RAPIDE

Les faciès d'écoulement rencontrés sur notre zone d'étude sont présentés sur le tableau cidessous.

Tableau 73 : Faciès d'écoulement du lit mineur

Facies	Profond lentique	Profond courant	Radier	Plat lentique	Plat courant	TOTAL
Longueur (m)	38 671	2 476	1 925	2 193	291	45 555
% du linéaire	85	5	4	5	1	100

Le faciès « profond lentique » domine la zone d'étude à plus de 85%. Il en résulte une homogénéisation des strates, des habitats et par conséquent une homogénéité faunistique et floristique. La forte représentation de ce faciès est la conséquence de la présence des ouvrages en travers du lit.

V.2.4.2. Fond du lit

a. Granulométrie

Les classes de granulométrie rencontrées sur le lit mineur sont décrites dans le tableau cidessous.

Tableau 74 : Granulométrie du lit mineur

Granulométrie	Total zone d'étude			
Granulometrie	m	%		
Limons-Argiles	32641	72		
Sables-limons	3795	8		
Cailloux-Graviers	3042	7		
Graviers-Sables	609	1		
Pierres-Cailloux	2790	6		
Blocs	564	1		
Dalles	643	1		
Non renseigné	1471	4		

Le fond du lit présente en majorité une granulométrie limono-argileuse (72%). La dominance de cette classe granulométrique sur le linéaire explique la faible diversité faunistique.

En effet, les éléments « cailloux-graviers » et « pierres-cailloux », qui constituent un support de ponte pour certaines espèces piscicoles (chabot, vandoise, goujon,...) et un habitat favorable à la macrofaune benthique (trichoptères, larves d'odonates et d'éphémères, mollusques filtreurs, planaires, etc.), ne représentent que 13 % de la zone d'étude.

b. Colmatage

Le colmatage correspond à un dépôt de fines particules sur le fond du lit, qui recouvrent la granulométrie plus grossière du lit (le substrat) en réduisant les interstices.

Le colmatage lorsqu'il est élevé réduit considérablement la diversité des habitats et peut modifier les habitats benthique et interstitiel. Les conséquences à court terme sont une augmentation de la dérive et une réduction de l'abondance totale des organismes. Les espèces sensibles, adaptées aux substrats grossiers, disparaissent au profit des espèces adaptées aux sédiments fins.

Des observations précises du colmatage ont été effectuées sur 58% de notre linéaire.

Tableau	75 : Colm	atage du	lit mineur

Colmatage	Total zone d'étude		
3	m	%	
Faible 5-30	19100	41	
Moyen 30-70	4480	10	
Important 70-100	3018	7	

Le colmatage dominant est principalement de type organique.

Le colmatage est considéré comme important lorsque le fond du lit est colmaté à plus de 70 % de sa largeur. Ce cas a été observé sur 7% des 58% recensés.

V.2.4.3. Végétation aquatique

D'après la largeur relevée de chaque tronçon et la longueur de la zone d'étude, il est estimé un pourcentage de recouvrement de végétation aquatique de 13,9 %. Ce pourcentage reste assez faible. Il ne suffit pas à créer un habitat suffisamment important et diversifié pour permettre la reproduction et la croissance de la faune aquatique.

Le Grand Morin offre des patchs de nénuphars et de rubaniers au niveau de ses zones lentiques.

Du callitriche et du potamot *pectiné* ou *crépu* se développent également dans les rares zones de plat courant.

Figure 70 : Végétation aquatique observée sur la zone d'étude

V.2.4.4. Ripisylve

Situées en zone de transition, les formations végétales rivulaires constituent des systèmes tampons, ou écotones, entre le milieu aquatique à forte dynamique et le milieu terrestre. Elles assurent divers rôles importants :

- stabilisation des berges ;
- ombrage qui réduit l'échauffement de l'eau et l'eutrophisation ;
- protection contre les crues ;
- filtration des apports sédimentaires et des pollutions diffuses ;
- fourniture d'habitats pour une faune diversifiée, des invertébrés aux mammifères ;
- fourniture aux cours d'eau de la matière organique particulaire (feuilles mortes, brindilles,...) et dissoute.

Au cours de la campagne de relevés, plusieurs éléments ont été observés afin de caractériser la végétation des berges : le type, l'ombrage, la densité et le recouvrement des associations végétales nommées communément « strate ». L'ensemble de ces éléments doit permettre de déterminer la qualité des berges et de juger des perspectives d'évolution de celles-ci.

Strates	Arborée	Arbustive	Hélophyte	
Rive droite (%)	52,4	21,8	48,0	
Rive gauche (%)	54,1	22,2	53,5	
Densité Totale	Dense	Eparse	Discontinue	Indéterminé
Rive droite (%)	46	20	31	3
Rive gauche (%)	46	13	34	7
			Ombrage	59,10%

Tableau 76 : Caractéristiques de la ripisylve présente sur les berges du Grand Morin

Les perspectives d'évolution de la ripisylve suivent celles d'une simple haie. L'âge des individus constituant notamment les strates arbustives et arborées, leur état sanitaire, leur densité, mais également la continuité de la ripisylve et sa connexion au réseau bocager lorsqu'il existe, constituent des facteurs essentiels pour l'évolution de cette dernière. Pérenniser la ripisylve consiste donc à rajeunir les sections les plus vieillissantes, à maintenir une diversité des strates et à établir un mode d'entretien adapté.

La densité totale offre un ombrage global de 60%. Les zones sans ombrage favorisent l'eutrophisation en augmentant la température de l'eau, avec pour conséquence la diminution du pourcentage d'oxygène.

Les linéaires de ripisylve sont légèrement plus importants en rive gauche mais on observe globalement une homogénéité entre les deux rives. La discontinuité de la ripisylve est également à l'origine d'une diversification d'habitats pour la faune et particulièrement chez les invertébrés.

V.2.5. Lit majeur

Le lit majeur d'un cours d'eau est la zone d'expansion de ses crues. Il s'agit donc d'une zone ponctuellement inondable où l'installation d'activités humaines et d'infrastructures est soumise à un risque naturel.

a. Occupation des sols

Les différents types d'occupation du sol du lit majeur sont donnés dans le graphique cidessous.

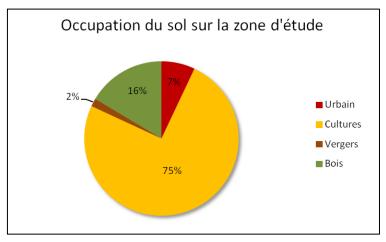


Figure 71 : Répartition de l'occupation des sols (CLC)

Les cultures et assimilés représentent à elles seules les trois quarts de la surface du lit majeur. Viennent ensuite les surfaces boisées, qui occupent 16% du lit majeur, et les espaces urbains (7%).

b. Zones humides

La Loi sur l'Eau de 1992 définit les zones humides comme « les terrains exploités ou non, habituellement inondés ou gorgés d'eau douce, salée ou saumâtre, de façon permanente ou temporaire ; la végétation, quand elle existe, y est dominée par des plantes hygrophiles pendant au moins une partie de l'année ».

Les zones humides sont des espaces de transition entre la terre et l'eau et revêtent par conséquent des réalités écologiques et économiques très variées. Leur dégradation depuis le début du XXe siècle (disparition de 67 % de leur surface), conjonction de trois facteurs : l'intensification des pratiques agricoles, des aménagements hydrauliques inadaptés et la pression de l'urbanisation et des infrastructures de transport, constitue un problème préoccupant. Cependant, de par une prise de conscience collective de leur intérêt socioéconomique, leur conservation semble être un enjeu majeur à l'heure actuelle.

Lors des campagnes de terrain, les principales zones humides recensées comprennent des forêts rivulaires humides qui sont présentes de l'aval de Crécy-la-Chapelle à l'amont du moulin Talmé. Sur ce secteur, une frayère à brochets implantée sur un Espace Naturel Sensible a également été notée et sera étudié en même temps que la modélisation (étude de l'alimentation de la frayère en fonction des lignes d'eau).

Au niveau de la confluence, le canal de Chalifert constitue également une zone humide. Plus alimenté par le Grand Morin, il est marqué par la présence très importante d'une espèce invasive, l'élodée du Canada.

L'étang du parc des Capucins de Coulommiers, alimenté par le brasset gauche du Grand Morin, représente une zone humide sur laquelle aucune espèce rare ou protégé n'a été remarquée.

Par ailleurs, aucune zone humide notable n'a été rencontrée.

Une étude menée par l'Agence de l'Eau en 2006 a permis de cartographier les zones à dominantes humides sur le bassin Seine-Normandie. Cette étude est basée sur la photo-interprétation d'orthophotoplan à 5m de résolution, sur des images satellites et sur des données ancillaires. L'étude montre aussi que les zones à dominantes humides présentes sur notre territoire sont essentiellement des formations forestières humides et marécageuses et des prairies humides.

Ces zones humides se situent sur les communes de Crécy-la-Chapelle, Villiers-sur-Morin, Coutevroult, Couilly Pont-aux-Dames, St Germain sur Morin et Voulangis (carte).

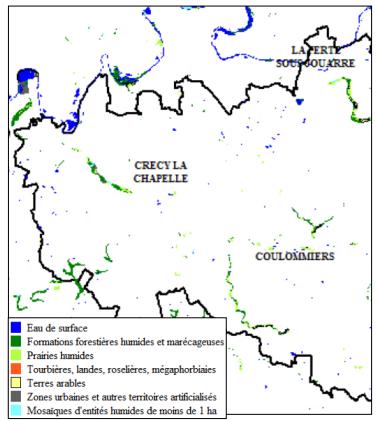


Figure 72 : Localisation des zones humides sur le territoire (source : SAGE)

D'autre part, on note un nombre important de mares et d'étangs sur le territoire, mais aussi de zones humides situées en milieu forestier et donc difficiles à localiser.

De nombreuses études sont en cours pour délimiter les zones humides sur ce territoire. Ainsi, le bassin versant du Grand Morin a été choisi par la DRIEE comme territoire pilote pour déterminer les enveloppes d'alerte humides, à partir de la nature des sols, de photos aériennes et d'images radars et infrarouges (source : SAGE).

V.2.6. Opérations d'ouverture des vannages

Une ouverture complète des vannages a été menée, avec plusieurs objectifs :

- afin évaluer le Grand Morin dans un état non contraint,
- afin d'examiner les structures des ouvrages hydrauliques lors des relevés,
- afin de réaliser des relevés topographiques des secteurs amont des ouvrages, dans l'emprise de la zone de remous

D'un point de vue pratique, ces opérations d'abaissement ont nécessité l'intervention des propriétaires pour l'ouverture des vannages.

Afin de coordonner ces opérations, les ouvertures ont été réalisées par grands tronçons, plutôt que bief par bief. Ceci ayant l'avantage de permettre d'observer une continuité des écoulements sur des moulins en « série », où en temps normal la ligne de remous du second contraint l'écoulement du premier.

Ces investigations ont été étalées sur 6 semaines entre l'hiver 2010 et le printemps 2011. Cette opération a permis de relever les paramètres suivants :

- les faciès d'écoulement (gamme de vitesses et de profondeurs) ;
- la connectivité longitudinale et latérale (bras secondaires et/ou zones humides non alimentées) ;
- l'attractivité (végétation en contact avec l'eau, hauteur de berges, etc.).

Parallèlement le diagnostic des structures des ouvrages hydrauliques, bâtis et autres infrastructures (présence de fondations en pieux bois notamment). Le diagnostic hydromorphologique a également été mené lors de cette campagne d'ouverture

Les observations ont été effectuées sur l'intégralité du linéaire. Certains biefs présentant des ouvrages qui ne sont plus manœuvrables (moulin de Serbonne et moulin de la Chapelle) n'ont pas pu être diagnostiqués dans un état non contraint. Pour des raisons techniques (brassets de Crécy-la-Chapelle), le moulin Saint-Martin n'a pas pu être laissé ouvert suffisamment longtemps pour réaliser les relevés.

L'ouverture des vannages a eu un effet remarquable sur les **faciès d'écoulement**. En effet, l'abaissement généralisé de la ligne d'eau réduit la profondeur moyenne sur l'ensemble des linéaires de remous. Les écoulements présentent donc des gammes de vitesses plus importantes avec l'apparition de radiers et de zones de plats courants. Cette situation contraste avec la situation actuelle lorsque les vannes sont fermées et régulent les niveaux. On observe cependant toujours un remous parfois important en amont immédiat de certains ouvrages (moulin Brûlé et moulin Jaune). Les ouvrages non manipulables, tels que les déversoirs, contraignent toujours les écoulements et sont à l'origine de ce constat.

Sur l'ensemble des linéaires influencés, le retour à un écoulement libre favorise la diversification des faciès d'écoulement. Cette diversification est présentée dans les cartographies.

Figure 73 : Diversification des faciès pendant les ouvertures

La connectivité est quant à elle influencée à la fois de manière positive et de manière négative.

En effet, l'ouverture des vannages rend certains ouvrages franchissables et améliore par conséquent la connectivité longitudinale. D'autres ouvrages montrent encore des chutes résiduelles ou des vitesses ne permettant pas la montaison des populations piscicoles. La franchissabilité est exposée dans la partie V.2.3.3. Potentialités de franchissement piscicole.

Concernant la connectivité latérale, elle est moyennement touchée sur le Grand Morin. En effet, les hauteurs de berges augmentent sur certains linéaires au droit des ouvrages les plus importants (usine de Boissy-le-Châtel, moulin de l'Arche, Porte à Bateaux) et la végétation n'est donc plus en contact avec le lit mineur. Cependant, la rivière montre un constat relativement similaire en position normale des vannes (régulation des niveaux).

Figure 74 : Augmentation des hauteurs de berges

La migration dans le réseau hydrographique secondaire principal reste toutefois possible après ouverture des vannes. Seul le Liéton n'est plus connecté lors des ouvertures car une chute est présente à la confluence avec le Grand Morin.

La situation est également différente sur les brassets de Coulommiers et certains brassets de Crécy-la-Chapelle où le seuil situé à l'amont de chacun est rendu infranchissable en raison de sa mise à sec.

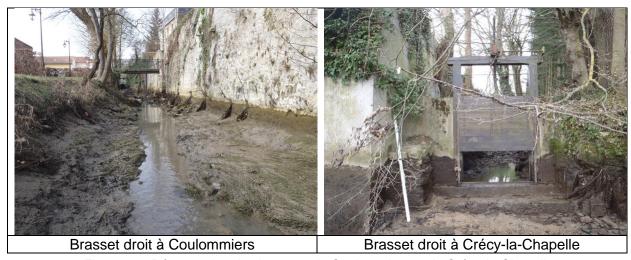


Figure 75 : Déconnexion des brassets de Coulommiers et de Crécy-la-Chapelle

Il semble donc que l'effet des ouvertures soit plutôt bénéfique sur la connectivité, notamment du fait d'un rétablissement partiel de la connectivité longitudinale.

Au même titre que la connectivité latérale, l'ouverture des vannes a un impact positif et négatif sur l'attractivité. En effet, certains linéaires présentent des milieux attractifs qui n'existaient pas forcément avant les ouvertures. En revanche, la baisse du niveau d'eau se traduit par une perte ponctuelle des caches principalement situées sous les systèmes racinaires des arbres. Cependant, le Grand Morin présente d'ores et déjà un faible potentiel concernant les caches.

L'ouverture des vannes apparaît comme une première étape potentielle dans la restauration des continuités écologiques (l'impact des ouvrages résiduels dans le lit mineur impactant toujours le linéaire en amont).

V.2.7. Conclusion sur les milieux et les habitats

Le diagnostic écologique fait apparaître les principaux points suivants :

- des dysfonctionnements dont le cloisonnement du Grand Morin en est la cause :
 - o une dominance du faciès d'écoulement « profond lentique » qui engendre une faible diversité d'habitats ;
 - une homogénéisation de granulométrie au fond du lit et une faible diversité de végétation aquatique, peu favorables au développement du peuplement piscicole et plus généralement à la faune aquatique;
- une végétation rivulaire présentant une base homogène de strate arborée, herbacée avec un ombrage permettant de garder une température favorable à la vie aquatique;
- une ripisylve présente sur l'ensemble du linéaire de façon dense ou discontinue, avec une forte présence de cas de Phytophtora.

Le retour à un écoulement libre améliore la qualité physique globale du Grand Morin avec notamment une diversification des faciès découlement, une amélioration de la connectivité longitudinale. A terme, des milieux attractifs seraient recouverts avec une des . Néanmoins, une perte de cache et une dégradation de la connectivité latérale est à noter ponctuellement sur le linéaire.

VI. VOLET HYDROMORPHOLOGIE

Ce volet est rédigé par Fluvial.IS.

VI.1. CONTEXTE

VI.1.1. Sectorisation du Grand Morin

La vallée du Grand Morin repose sur une structure géologique qui est homogène sur toute la zone d'étude. Le cours d'eau a entaillé le plateau de Brie en dégageant les formations géologiques de l'Eocène, qui sont présentes depuis le cours d'eau jusqu'aux zones les plus élevées du plateau :

- le Bartonien moyen composé de Calcaires et de Marnes (calcaires à silex noirs ou beiges qui correspondent aux calcaires de Saint-Ouen) ;
- le Bartonien supérieur composé des Calcaires de Champigny, de la formation du Gypse et des Marnes supra-gypseuses ;
- le Stampien inférieur, composé de Calcaires et Meulière de Brie (essentiellement représentée par des bancs ou des blocs de meulière disjoints dans une matrice argileuse) et par endroits d'Argiles vertes de Romainville.

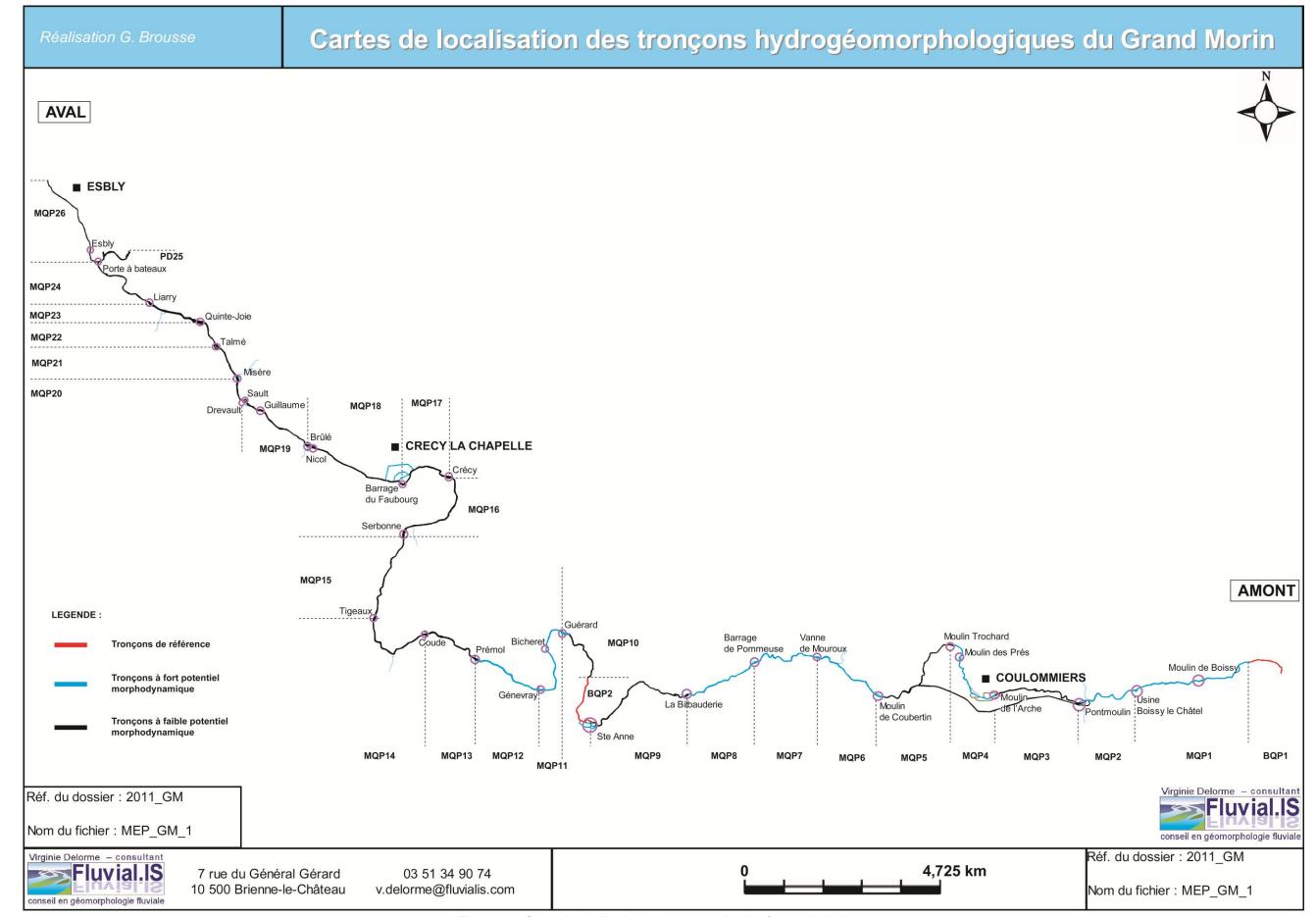
Les alluvions du Grand Morin se décomposent ainsi :

- les alluvions anciennes, composées de sables et graviers, qui forment aujourd'hui des terrasses alluviales ;
- les alluvions récentes, composées de limons fins, argilo-sableux.

La sectorisation du Grand Morin en tronçons homogènes se base sur la structure géologique du bassin versant, les confluences importantes, les diffluences et les ruptures de pentes. Le Grand Morin a été découpé en 28 tronçons.

VI.1.2. Limites de l'étude

Les données bathymétriques recueillies par SEGI renseignent la profondeur jusqu'au niveau vaseux du lit mineur du Grand Morin en fonction des conditions hydrologiques du moment. La majorité du linéaire étant fortement envasée, la hauteur de vase masque l'altitude réelle du fond de chenal. Par conséquent le profil en long doit être étudié en fonction de cette information avant d'engager des travaux supplémentaires pour sonder le fond.


Le débit dominant naturel (la crue annuelle à biennale) du Grand Morin ne correspond plus au débit de pleins bords car la géométrie du lit mineur a été fortement modifiée (recalibrage, rectification, et encaissement). Le débit dominant retenu est donc celui qui, dans la configuration actuelle de la rivière, est susceptible d'apporter des modifications. Celui-ci a été estimé grâce à une modélisation mathématique.

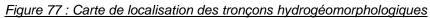


Figure 76: Recalibrage du Grand Morin

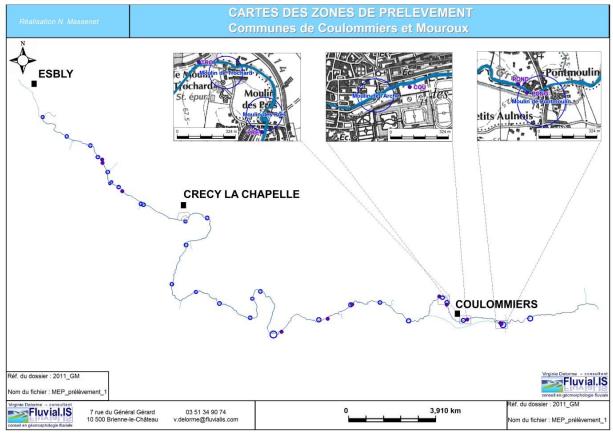
VI.2. DIAGNOSTIC HYDROGEOMORPHOLOGIQUE DU GRAND MORIN

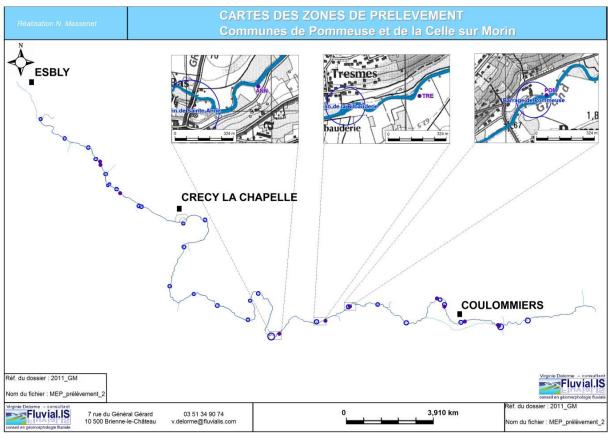
VI.2.1. Fonctionnement hydrogéomorphologique récent du Grand Morin

VI.2.1.1. Texture et structure des berges du Grand-Morin

Compte tenu des enjeux et des possibilités d'effacement des ouvrages susceptibles d'affecter la stabilité des berges, il a été proposé de réaliser des analyses plus poussées de la texture et de la structure des berges naturelles.

Globalement, le sommet de berge est constitué d'un horizon humifère limoneux (sol) de faible épaisseur. La stratigraphie est ensuite difficilement observable à l'œil puisque les granulométries sont très homogènes (limono-argileuses), seules des variations de couleur permettent de distinguer des horizons d'oxydation et de réduction. La texture et la structure des berges font que malgré leur commandement (parfois plus de 4 m), elles sont classées dans notre typologie parmi les berges les plus stables (les moins sensibles à l'érosion).


Toutefois, le colmatage vaseux généralisé des pieds de berge n'a pas permis de diagnostiquer visuellement cet horizon. Hors, il est primordial de le définir car plus sa texture (limoneuse, sableuse ou graveleuse) sera grossière, plus le potentiel de mobilité sera fort. Les observations de terrain ont mis en évidence quelques rares radiers grossiers. Il était donc nécessaire de définir si le matériel les constituant provenait de l'amont du bassinversant (ce qui irait dans le sens d'un faible potentiel de mobilité latéral) ou s'il provenait des pieds de berges mais que les graviers étaient masqués par les dépôts vaseux (ce qui irait dans le sens d'un potentiel de mobilité latéral plus important).


Ainsi, afin d'évaluer au mieux le potentiel de mobilité du Grand Morin, des carottages mécaniques ont été réalisés (cf. cartes de localisation) afin d'atteindre les sédiments susceptibles d'affleurer en pied de berge lors d'abaissement de la ligne d'eau. Ces carottages ont permis de prélever des échantillons analysés au laboratoire.

Les prélèvements se situent :

- en aval du Moulin de Pontmoulin (commune de Coulommiers) : POND et PONG ;
- en amont du Moulin de l'Arche (commune de Coulommiers) : COU ;
- en amont du Moulin des Prés (commune de Mouroux) : PRE ;
- en aval du Moulin Trochard : TRO ;
- en amont du Moulin de Pommeuse (commune de Pommeuse) : POM ;
- en amont du Moulin de Bilbauderie (commune de Pommeuse) : TRE ;
- en amont du Moulin Sainte-Anne (commune de Celle-sur-Morin) : ANN ;
- en amont du Moulin de Guillaume (commune de Villiers sur Morin) : GUI ;
- en amont du Moulin de Talmé (commune de Saint Germain/Morin et Couilly Pont aux Dames) : TALG et TALD.

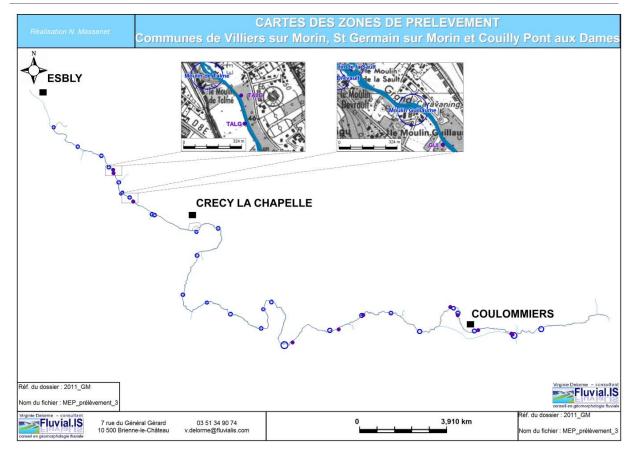


Figure 78 : Cartes des zones de prélèvements

VI.2.1.2. Descriptions des profils sédimentaires (Prof. Dr. Jochen Kubiniok, Université de Saarbrücken)

L'étude des sédiments révèle une texture essentiellement limono-argileuse. La présence ponctuelle de tourbe, charbon et de coquilles indique un âge holocène pour l'ensemble des échantillons prélevés jusqu'à une profondeur de 5 mètres. Lorsque les profils indiquent des « pertes », il s'agit de sections où la carotte ne contenait pas de sédiments.

Moulin de Pontmoulin, rive gauche: PONG.

Profondeur	Description	Densité (1:faible, 5:forte)	Texture	Observations
0 – 5	Sol avec humus	1	Argilo- limoneuse	Sol pauvre en humus
5 – 30	Sol altéré	2	Argilo- limoneuse	
30 – 250	Alluvions	2	Argilo- limoneuse	
250 – 320	Alluvions (oxydation)	2	Argilo- limoneuse	Oxyde de fer
320 - 340	Pertes			
340 – 490	Alluvions 2 (réduction)	2	Argilo- limoneuse	

Moulin de Pontmoulin, rive droite : POND.

Profondeur	Description	Densité (1:faible, 5:forte)	Texture	Observations
0 – 10	Sol avec humus	1	Argilo- limoneuse	
10 - 80	Sol altéré	2	Argilo- limoneuse	
80 – 190	Alluvions 1	3	Limono-argileuse	
190 – 210	Alluvions 1	3	Limono-argileuse	coquilles
210 – 310	Alluvions 2 (oxydation)	3	Limono-argileuse	Oxydes de fer
310 – 340	Alluvions 3 (oxydation)	3	Argilo- limoneuse	Oxydes de fer, coquilles
340 – 460	Alluvions 4 (réduction)	2	Limono- argileuse	
460 – 500	Alluvions 5 (réduction)	2	glaise sableuse	peu gravier

Moulin de l'Arche : COU.

Profondeur	Description	Densité (1:faible, 5:forte)	Texture	Observations
0 – 5	Sol avec humus	1	Glaise limoneuse	
5 – 38	Artificiel 1	2-3	Glaise limoneuse	Scories
38 – 75	Artificiel 2	3	Limono-argileuse	
75 – 89	Artificiel 3	2	Sableuse	
89 – 110	Alluvions 1	2	Limono- argileuse	
110 – 125	Pertes			
125 – 220	Alluvions 2	2	Argilo- limoneuse	
220 – 300	Alluvions 3 (réduction)	2	Limono-argileuse	
300 – 390	Pertes			
390 – 450	Alluvions 4 (réduction)	3	Glaise limoneuse	
450 – 500	Alluvions 5 (réduction)	1	Tourbe	

Moulin des Prés : PRE.

Profondeur	Description	Densité (1:faible, 5:forte)	Texture	Observations
0 – 30	Artificiel 1	2	Argilo- limoneuse	
30 – 80	Artificiel 2	2	Argilo- limoneuse	
80 – 140	Artificiel 3	3	Argilo- limoneuse	Pierre à chaux > 3cm
140 – 230	Alluvions 1	3	Limono- argileuse	
230 – 300	Alluvions 1 (réduction)	3	Limono- argileuse	
300 – 500	Alluvions 1 (réduction)	3	Limono- argileuse	

Moulin Trochard: TRO.

Profondeur	Description	Densité (1:faible, 5:forte)	Texture	Observations
0 – 8	Sol avec humus	1	Limono- argileuse	Pauvre en humus
8 – 35	Sol avec humus 2/ Alluvions1	2	Argilo- limoneuse	Assez riche en humus
35 – 70	Alluvions 1	2-3	Argilo- limoneuse	
70 – 120	Alluvions 2	3	Argilo- limoneuse	
120 – 150	Pertes			
150 – 340	Alluvions 2	3	Argilo- limoneuse	
340 – 370	Pertes			
370 – 450	Alluvions 3	2	Argilo- limoneuse	Charbon
450 – 460	Alluvions 4	2	Argilo- limoneuse	
460 – 490	Pertes			
490 – 500	Alluvions 4 (réduction)	3	Argilo- limoneuse	Oxyde de manganèse

Moulin de Pommeuse : POM.

Profondeur	Description	Densité (1:faible, 5:forte)	Texture	Observations
0 – 10	Sol avec humus	1	Argilo- limoneuse	Assez pauvre en humus
10 - 80	Alluvions 1/ Sol altéré	2	Argilo- limoneuse	Pauvre en humus
80 – 230	Alluvions 1 (oxydation)	2-3	Argilo- limoneuse	
230 -250	Sol altéré			
250 – 350	Alluvions 2 (réduction)	2	Limono- argileuse	
350 – 400	Pertes			_
400 – 500	Alluvions 2 (réduction)	2	Limono- argileuse	coquilles

Moulin de la Bilbauderie : TRE.

Profondeur	Description	Densité (1:faible, 5:forte)	Texture	Observations
0 - 15	Sol avec humus	2	Argilo- limoneuse	
15 - 80	Alluvions 1	2	Argilo- limoneuse	
80 – 160	Alluvions 2	3	Argilo- limoneuse	
160 – 220	Pertes		Absence de sable	
220 – 260	Alluvions 3 (oxydation)	2	Limono- argileuse	
260 – 350	Alluvions 3 (réduction)	2	Limono- argileuse	
350 – 490	Pertes		Sablo-limoneux ?	

Moulin Sainte-Anne : ANN.

Profondeur	Description	Densité (1:faible, 5:forte)	Texture	Observations
0 – 70	Sol avec humus	2	Argilo- limoneuse	
70 – 100	Alluvions 1	3	Argilo- limoneuse	Pauvre en humus
100 – 140	Pertes			
140 – 150	Alluvions 2	3	Argilo- limoneuse	Pauvre en humus
150 – 195	Alluvions 3	3	Argilo- limoneuse	coquilles
195 – 260	Alluvions 4 (oxydation)	3	Argilo- limoneuse	Oxydes de manganèse / oxydes de fer
260 – 310	Alluvions 4 (réduction)	3	Argilo- limoneuse	coquilles
310 – 430	Pertes		Absence de sable	
430 – 500	Alluvions 5 (réduction)	2	Limono- argileuse	Assez pauvre en humus

Moulin Guillaume : GUI.

Profondeur	Description	Densité (1:faible, 5:forte)	Texture	Observations
0 – 20	Sol avec humus	2	Limoneuse	
20 – 120	Alluvions 1 (oxydation)	3	Limono- argileuse	Oxydes de fer
120 – 220	Pertes		Limono- argileuse + (sable)	
220 - 310	Alluvions 2	3	Limono- argileuse	
310 – 450	Pertes (réduction)		Limono- argileuse	
450 – 500	Alluvions 3 (réduction)	1	Limono- argileuse	Oxydes de manganèse

Moulin Talmé, rive gauche : TALG.

Profondeur	Description	Densité (1:faible, 5:forte)	Texture	Observations	
0 – 10	Sol avec humus	1	Argilo- limoneuse		
10 – 40	Sol altéré	3	Argilo- limoneuse		
40 – 180	Alluvions 1	2-3	Argilo- limoneuse		
180 – 220	Alluvions 1 (réduction)	2	Argilo- limoneuse		
220 – 280	Alluvions 1 (réduction)	2	Argilo- limoneuse	Sulfure de fer ?	
280 – 340	Pertes		(Argilo- limoneuse)		
340 – 430	Alluvions (réduction)	2-3	Argilo- limoneuse		
430 – 490	Alluvions	2	Limono- argileuse	Odeur de sulfure d'hydrogène ?	

Moulin Talmé, rive droite : TALD.

Profondeur	Description	Densité (1:faible, 5:forte)	Texture	Observations
0 – 15	Sol avec humus	2	Limono- argileuse	
15 – 105	Alluvions 1	3	Argilo- limoneuse	
105 – 145	Pertes			
145 - 270	Alluvions 1 (oxydation)	3	Argilo- limoneuse	
270 . 400	Alluvions 2 (réduction)	2-3	Limono- argileuse	
400 – 440	Pertes			
440 – 470	Alluvions 2 (réduction)	2	Limono- argileuse	
470 – 500	roche non altérée	3-4		blanche, sèche

a. Analyse de la texture

La texture des échantillons est déterminée grâce à l'élaboration d'un diagramme triangulaire (figure suivante). Celui-ci met en évidence l'homogénéité de la granulométrie des dépôts.

L'ensemble des échantillons montre une quasi-absence de ballast (fraction grossière) et un pourcentage de sables toujours inférieur à 30%. La part de limons-argiles est comprise entre 70 et 95%.

Il est à noter que le substrat est capable de fournir des éléments grossiers (morceaux de calcaire anguleux pléistocènes). Ainsi, la finesse des sédiments ne traduit pas une absence de matériel susceptible de fournir des éléments grossiers dans le bassin-versant mais bien la faiblesse des processus hydrodynamiques depuis l'Holocène.

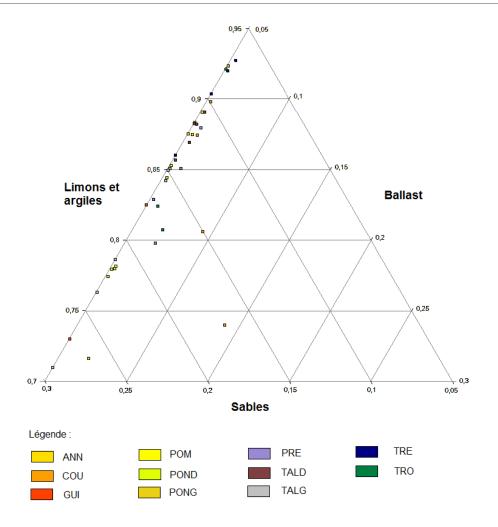


Diagramme triangulaire de la texture des échantillons du Grand-Morin.

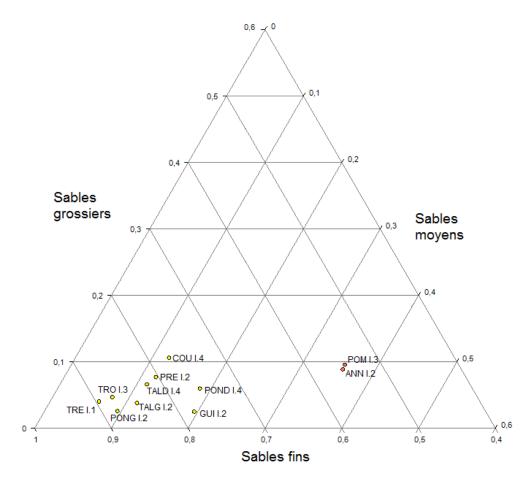
b. Analyses des sables

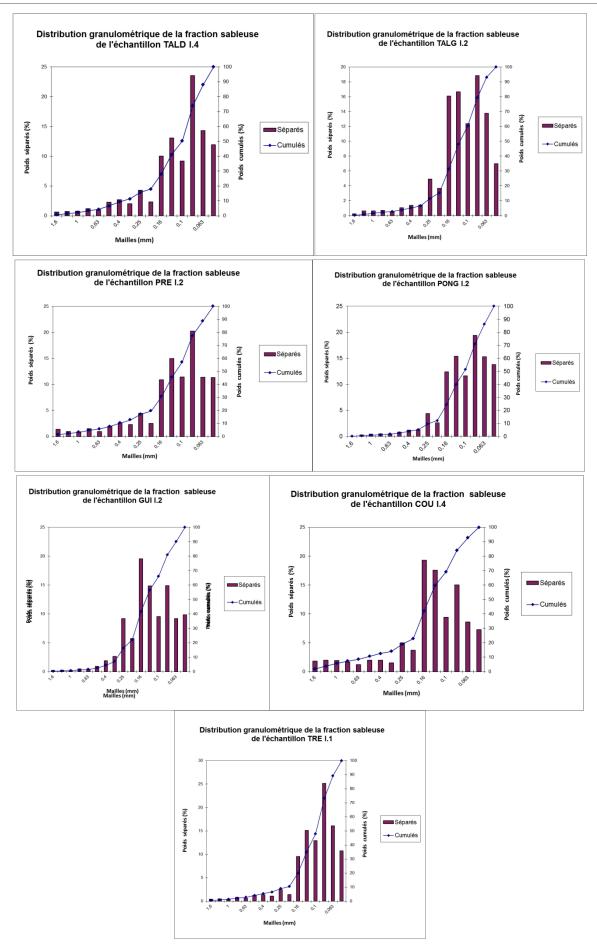
L'analyse des sables n'a pas été réalisée sur l'ensemble des échantillons du fait de l'homogénéité de ceux-ci. Une analyse complète de la fraction sableuse a été réalisée par point de prélèvement et en ciblant les échantillons qui présentaient les plus fortes teneurs en sable.

Différentes fractions sableuses

L'analyse des sables confirme les observations précédentes, à savoir la faiblesse des processus hydrodynamiques depuis le début de l'Holocène car l'ensemble des échantillons présentent des teneurs en sables grossiers inférieures à 50% voire 30% (pour la majorité d'entre eux). Les sables fins prédominent avec des pourcentages toujours supérieurs à 50% voire 70%.

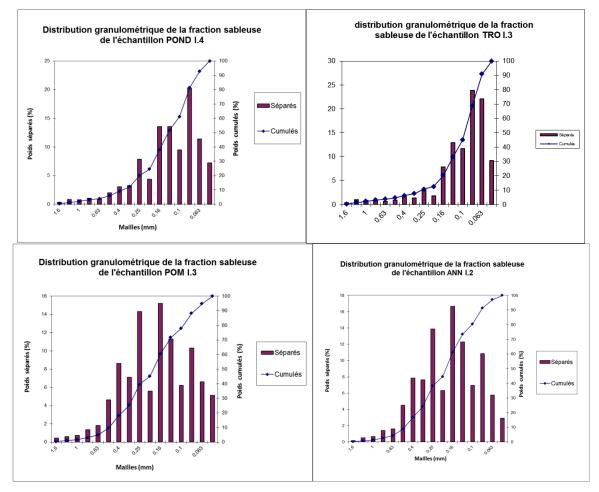
Les échantillons prélevés au moulin de Pommeuse et au moulin Sainte Anne sont les plus grossiers.




Diagramme triangulaire de la fraction sableuse des échantillons du Grand-Morin.

> Courbes granulométriques cumulatives

L'analyse des courbes granulométriques cumulées de la fraction sableuse confirme l'origine alluviale des dépôts. On peut observer deux types de courbes : les hyperboles et les hyperboles à légère tendance sigmoïdale.


Les courbes hyperboliques indiquent une prédominance des particules fines. Elles témoignent de dépôts en eau calme et de dépôts de fin de crue (décantation). Ceci confirme la faiblesse des processus hydrodynamiques depuis le début de l'Holocène.

Les sigmoïdes sont le résultat d'une sélection limitée à une seule tranche de matériel correspondant à la partie centrale de la courbe. Les particules grossières manquent parce qu'elles ne sont pas venues jusqu'au point considéré alors que les éléments les plus fins ont été entraînés plus loin. Les courbes avec une légère tendance sigmoïdale reflète donc un hydrodynamisme un peu plus fort mais toujours faible (secteurs de Pontmoulin, Trochard et Pommeuse).

Courbes granulométriques de la fraction sableuse de type « hyperbole ».

Courbes granulométriques de la fraction sableuse de type « hyperbole à tendance sigmoïdale ».

c. Analyses des indices granulométriques

> Grain moyen

« Il est l'expression de la force du courant capable d'avoir mis en mouvement l'essentiel d'un sédiment donné » (Chamley, 1990). Le grain moyen traduit donc la compétence ou la force moyenne d'un courant (Folk et Ward, 1957 ; Chamley, 1987). Il indique si l'échantillon est plutôt grossier ou plutôt fin. Il permet de comparer en terme de moyenne les échantillons mais ne révèle en aucun cas l'hétérogénéité ou l'homogénéité du sédiment.

Le grain moyen est grossier de 2,5 à 1 mm ; il est moyen de 1 à 0,5 mm, fin de 0,5 à 0,25 et très fin de 0,25 à 0,05.

Ainsi l'ensemble des échantillons étudiés ont un grain moyen fin à très fin (figure suivante).

> Indice d'asymétrie, le Skewness

Il permet de connaître la prépondérance des sables fins ou grossiers par rapport à la moyenne de l'échantillon (Chamley, 1990 ; Devillers, 2005). De ce fait, cet indice reflète davantage le milieu de dépôt que les conditions et le mode de transport. Il est donc le seul indice à avoir un rapport direct, non pas avec l'énergie de l'agent de transport, mais avec le type de processus entraînant le dépôt. Il permet de savoir si un sédiment a subi un enrichissement (par exemple un apport de matériel fin décanté en fin de crue) ou un appauvrissement (lessivage des particules fines) (Duane, 1964 ; Folk et Ward, 1957 ; Visher, 1969).

L'ensemble des échantillons présentent une asymétrie négative à très négative, cela signifie donc que les échantillons ont subi un enrichissement en éléments fins lors de la décantation en fin de crue. Ce type de processus s'observe dans les lits majeurs des cours d'eau.

Ainsi, nous pouvons en déduire que les divagations du lit mineur au cours de l'Holocène ont été limitées car l'ensemble des échantillons témoignent du même type de fonctionnement.

> Indice de classement ou indice de tri

Il est une évaluation du classement de l'échantillon, il mesure la dispersion des tailles par rapport à la moyenne de l'échantillon. Il permet d'apprécier l'importance des actions de tri au cours du transport et du dépôt ainsi que le type de dynamique et son intensité.

Il est en rapport avec la compétence du processus de dépôt (capacité de sélection) et sa régularité. Tout courant de grande énergie a un pouvoir de classement important, mais il est nécessaire de souligner qu'une forte variation de l'énergie peut entraîner une grande dispersion granulométrique. La bioturbation et/ou les actions humaines (labours...) peuvent occasionner des redistributions post-sédimentaires qui auront pour conséquence de diminuer l'indice de tri.

Le problème de cet indice est qu'il ne peut être utilisé de manière fiable que si la courbe granulométrique est de type gaussienne (un seul mode).

Echelle en mm	Dénomination
de 0 à 0,35	Très bien trié
de 0,35 à 0,5	Bien trié
de 0,5 à 1	Moyennement trié
de 1 à 2	Peu trié
de 2 à 4	Très peu trié
Plus de 4	Extrêmement peu trié

Echelle de tri du sédiment (source : Folk et Ward, 1957)

L'ensemble des échantillons sont globalement moyennement triés. On peut y voir une faiblesse de l'agent de transport ou l'action postérieure au dépôt de la bioturbation ou des labours (pour les échantillons les plus proches de la surface).

Echantillon	Grain moyen	Skewness	Indice de tri
POND I.4	0,16	-0,25	0,97
PONG I.2	0,12	-0.21	0,77
COU I.4	0,17	-0,24	1,1
PRE I.2	0,15	-0,35	1,05
TRO I.3	0,12	-0,41	0,82
POM I.3	0,23	-0,05	1,07
TRE I.1	0,11	-0,34	0,79
ANN I.2	0,23	-0,07	1,01
GUI I.2	0,16	-0,01	0,86
TALD I.4	0,14	-0,44	0,98
TALG I.2	0,13	-0,14	0,78

Synthèse des indices granulométriques.

VI.2.1.3. Conclusion : des berges plutôt très cohérentes

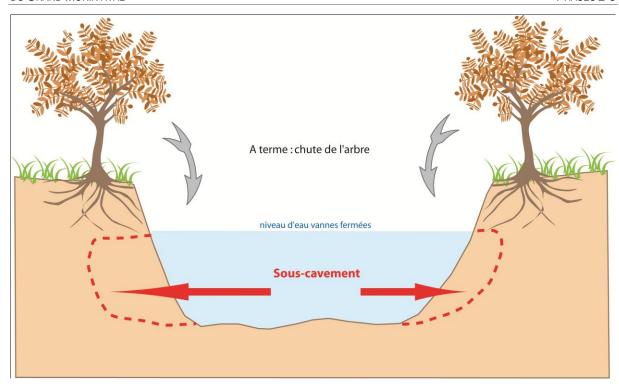
Les analyses en laboratoire confirment les observations de terrain préalable. Les berges du Grand-Morin présentent une grande homogénéité (du sommet au pied de berge et de l'amont vers l'aval de la rivière). Elles sont essentiellement constituées de limons et d'argile dans des proportions qui varient peu.

Les carottages ont permis de diagnostiquer le pied de berges (masqué par la vase lors des ouvertures de vannes) : jusqu'à une profondeur de 4 à 5 m, aucun élément grossier n'a été observé. Ainsi, les radiers grossiers sont un héritage lié au transit longitudinal et non une fourniture de matériaux issus des berges.

Les analyses granulométriques révèlent également que la dynamique du Grand-Morin a été sensiblement la même au cours de l'holocène et que ses berges fonctionnent comme un lit majeur depuis longtemps (au moins sur les secteurs analysés). Ceci va encore une fois dans le sens d'une faible mobilité du cours d'eau.

Les enseignements sont les suivants :

- Les berges sont homogènes et cohésives, la ripisylve a donc un rôle primordial pour déterminer leur stabilité ou leur instabilité.
- En cas d'effacement, malgré le gain de pente potentiel (et donc d'énergie), si on exclut le rôle de la ripisylve, les berges ne seront pas plus instables qu'actuellement (la vase ne cache pas de sédiments sableux ou grossiers en pied de berges).
- Les ouvrages sont de véritables freins à la charge grossière qui ne transite que de manière longitudinale puisque le Grand-Morin ne peut pas se recharger en éléments grossiers dans ses berges. Toutefois, la proportion de la charge grossière dans le transport solide du Grand-Morin est mineure. Le transport solide est essentiellement constitué de sables fins qui transitent en suspension. Ce type de transport n'est que faiblement impacté par les ouvrages.
- L'effacement de certains ouvrages permettra donc de retrouver des substrats légèrement différents de ceux observés actuellement (évacuation des vases aux profits des limons-argile et sables fins).


VI.2.2. Cours d'eau en déséquilibre morphodynamique

En général, la dynamique latérale des cours d'eau sinueux se traduit par une érosion de berge concave et un engraissement de la berge opposée. Ceci ne s'observe pas sur le Grand Morin. Les formes d'érosion affectent indifféremment les deux berges se traduisant par un élargissement lent et progressif du cours d'eau.

Actuellement, on observe 4 types d'évolution de berges :

- Des reculs de berges ponctuels liés à la chute d'un arbre ;
- Des érosions ponctuelles (anses d'érosion) entre les arbres ou liées aux aménagements, ces derniers constituant des points durs, l'érosion se porte sur les secteurs non protégés (par la végétation ou par les aménagements);
- Des phénomènes de **sous-tirage** (plus rares ; les cas observés sont liés à des aménagements de berges) :
- Des phénomènes de sous-cavement (cas le plus fréquent, figure suivante) observés dans les zones de remous. Le maintien de la ligne d'eau par l'ouvrage empêche le développement de la végétation sur l'ensemble de la berge. Ainsi, vannes fermées, la pression de l'eau maintient le pied de berge et la végétation maintient le sommet de la berge. Le système est donc très stable. Les processus érosifs sont très lents et creusent progressivement la partie de la berge immergée, non protégée par le système racinaire. Au fur et à mesure du temps, le poids de l'arbre finit par entraîner la berge. En cas d'ouvertures brutales des vannes, la pression de l'eau ne joue plus son rôle, la végétation n'a pas le temps de s'adapter, les processus érosifs sont donc accentués. Ainsi, lors des choix d'aménagement d'ouvrage, en cas d'effacement, des mesures adaptées devront être prises concernant la ripisylve. Les forces tractrices étant faibles, une repousse en herbacée est suffisante pour apporter de la stabilité.

Le lit mineur d'un cours d'eau, à l'état naturel est généralement façonné et dimensionné en fonction des crues environ biennales. Le lit mineur du Grand-Morin a été recalibré de telle sorte qu'il est globalement capable de contenir une crue de fréquence de retour 2à anns.

L'envasement observé et l'évolution des berges montrent que le cours d'eau cherche à s'exhausser afin de retrouver une section plus en accord avec sa dynamique.

Le recalibrage a eu les conséquences suivantes. Quand on élargit un cours d'eau, à débit égal, le tirant d'eau diminue ainsi que la force tractrice. Par contre, la plus grande capacité du lit, ne permet plus le débordement des débits plus forts qui autrefois se dissipaient dans le lit majeur. Dans ce cas, la capacité de transport solide et d'arrachement des matériaux du lit est augmentée. Un lit mineur dont la capacité hydraulique est augmentée au-delà des crues biennales, favorise par « effet de chasse », la disparition des formes modelées par les petites crues annuelles. Le recalibrage d'un lit naturel a donc tendance à minimiser la capacité morphogène des petites crues et à exagérer celle des crues plus rares. Les matériaux grossiers transportés par les plus grosses crues sont expulsés, les vases en suspension présentes durant tout le cycle hydrologique dominent les fonds. Les capacités de transport solide sont donc amoindries, les fonds se comblent en matériaux fins. L'entretien des fonds pour maintenir la section artificielle combiné aux processus d'érosion décrits précédemment provoquent l'élargissement continuel du lit mineur et la perte progressive de terrains en rive droite et en rive gauche.

Le diagnostic de terrain n'a pas mis en évidence d'enfoncement du cours d'eau postérieurement à la mise en place des ouvrages.

La présence d'ouvrages transversaux qui maintiennent le profil en long ainsi que les aménagements passés (recalibrage, curage, rectification) empêchent le cours d'eau de se ré-équilibrer, le Grand-Morin est donc en déséquilibre morphodynamique.

Le retour à un bon fonctionnement hydrogéomorphologique passerait par un exhaussement des fonds et donc la possibilité pour le Grand-Morin de déborder dans son lit majeur pour des crues fréquentes. Les processus qui pourraient être alors observés seraient l'érosion en rive concave et le dépôt en rive convexe. La perte de terrains sur une rive serait compensée par le gain sur l'autre rive. Toutefois, les analyses granulométriques vont dans le sens d'une faible mobilité du cours d'eau a été relativement faible.

VI.2.3. Définition de l'état de référence, les secteurs morphologiquement « préservés »

Compte tenu des observations préalables, sur l'ensemble du linéaire, seuls deux secteurs présentent des caractéristiques morphologiques qui peuvent être considérés comme les plus naturelles (BQP1 et BQP 2). Il s'agit du secteur en aval de Chauffry au lieu-dit « les Corvelles » (BQP 1) et du secteur en aval du moulin de Saint-Anne au niveau de la commune de la Celle-en-Bas (BQP 2). Ces secteurs ne sont pas sous l'influence de remous ce qui permet au cours d'eau se ré-équilibrer à l'intérieur de son lit mineur dont la section est trop grande. Ses capacités de débordements ne sont pas modifiées. Bien qu'il s'agisse de secteurs "préservés", le lit majeur est toujours fortement déconnecté du lit mineur.

VI.2.3.1. Tronçon BQP 1

> Caractéristiques morphologiques

Ce tronçon d'une longueur de 875 m adopte un style fluvial sinueux (indice de sinuosité [Is] = 1,2) dans une vallée encaissée de plus de 50 m par rapport au plateau de Brie. Sur ce secteur, l'écoulement est plat ou ondulé et le lit mineur du Grand Morin atteint 10 m de large et une profondeur de 1,80 m (25/05/2011), alors que la plaine alluviale atteint localement 280 m de large. Une coupe transversale du Grand Morin dessine une section en forme de « U » avec des berges aux profils subverticaux d'une hauteur de 3 m de texture principalement limoneuse. Toutes les strates végétales sont présentes sur la ripisylve ce qui renforce le maintien des berges déjà bien cohérentes du fait de leur structure et de leur structure. Malgré ce bon maintien naturel des berges, plusieurs indicateurs de mobilité laissent envisager que ce tronçon conserve un caractère relativement dynamique.

Caractéristiques morphodynamiques

Les zones d'érosions de berges sont assez nombreuses sur ce tronçon. Le travail érosif de la rivière s'illustre par un sapement de berge qui déstabilise le système racinaire des arbres qui finissent par s'arracher de la berge en créant une érosion régressive de la berge et contribuant à former des embâcles (fig. B). Ce processus est assez lent puisqu'aucune zone d'érosion n'est récente (fig. A), cependant la présence très locale de graviers en pieds de berge laisse supposer que par endroits la berge a une texture moins cohérente ce qui peut accélérer le processus de déstabilisation de la berge (fig. C).

Figure 79 : Tronçon à caractère préservé

A : Erosion de berge ancienne, B : Arbre tombé et embâcle et C : Graviers en pieds de berge localement.

> Caractéristiques hydrogéomorphologiques

La texture de la couche de fond de la rivière est principalement graveleuse et l'on note l'absence de vase ce qui indique que l'énergie du Grand Morin sur ce secteur lui offre une bonne compétence (taille maximale du matériel transporté). La puissance fluviale spécifique actuelle de ce tronçon calculée à 31 W/m² (sans effet de chute) corrobore cette bonne compétence ainsi que les nombreuses traces morphodynamiques relevées sur le terrain. Cette puissance fluviale spécifique correspondrait au seuil au-dessus duquel le cours d'eau peut théoriquement s'auto-ajuster morphologiquement et retrouver une géométrie plus naturelle. Cependant, les graviers et galets en place présentent une structure imbriquée, responsable d'une protection mutuelle entre les particules, impliquant des débits critiques très élevés. L'aspect patiné de ces matériaux montre bien la faible récurrence de la mise en mouvement de cette fraction graveleuse.

VI.2.3.2. Tronçon BQP2

Caractéristiques morphologiques

Ce tronçon d'une longueur de 1200 m adopte un style fluvial sinueux (Is = 1,2) dans une vallée encaissée de plus de 70 m par rapport au plateau de Brie. A la date du 27/07/2011, l'écoulement était « ondulé courant » ou « plat courant » avec une profondeur souvent inférieure à 50 cm. Le lit mineur du Grand Morin atteint 10 m de large sur ce secteur et la plaine alluviale ne dépasse pas les 130 m de large dans sa partie amont et s'élargit dans sa partie aval pour dépasser 300 m de large. La texture des berges alterne entre une composition très homogène (argiles et limons) et une composition plus hétérogène avec la présence de graviers en pieds de berges. L'alternance de fosses et de radiers contribue à diversifier les faciès d'écoulement ce qui indique la faiblesse de l'influence des ouvrages en aval. Sur la ripisylve, toutes les strates végétales sont présentes mais plusieurs zones sont caractérisées par des trouées avec la présence ponctuelle de la strate arborescente qui alterne avec la strate herbacée. La stabilité des berges repose donc davantage sur leur texture argilo-limoneuse. Malgré ce bon maintien naturel des berges, plusieurs indicateurs de mobilité laissent envisager que ce tronçon conserve un caractère dynamique.

Caractéristiques morphodynamiques

L'alternance de zones en érosion et de zones en accumulation sédimentaire est un bon marqueur du dynamisme de ce tronçon. En effet, les différentes érosions de berges localisées directement en aval du moulin de Saint-Anne (figure ci-dessous) sont dues à une augmentation de l'énergie du Grand Morin liée à la chute de l'ouvrage ou à la réflexion de l'écoulement sur la berge gauche consolidée. Une fois ce surplus d'énergie dissipé, la rivière a tendance à façonner des petits bancs alluviaux à texture principalement graveleuse (figure ci-dessous) plus ou moins aménagés par les riverains et/ou fixés par la végétation.

Sur ce secteur le Grand Morin commence à modifier sa section (auto-ajustement). En effet, la construction d'un « lit moyen » dans l'axe du lit mineur permet au cours d'eau de réduire sa section dans le but de retrouver un équilibre avec le débit. Ce processus naturel est voué à évoluer dans le temps parallèlement aux variations du débit liquide et du débit solide du cours d'eau. Aujourd'hui ce « lit moyen » est fixé par des enrochements en pied de berge ce qui bloque le processus d'auto-ajustement de la section du Grand Morin. Il en résulte des zones d'érosion latérales par réflexion des écoulements.

Figure 80: Tronçon dynamique

Caractéristiques hydrogéomorphologiques

La texture de la couche de fond de la rivière est principalement sablo-graveleuse et l'on note l'absence de vase ce qui indique que l'énergie du Grand Morin sur ce secteur lui offre une bonne compétence. La puissance spécifique fluviale calculée à 34 W/m² est supérieure au seuil minimal d'auto-ajustement morphologique et corrobore la bonne compétence et sont confirmées par les nombreuses traces morphodynamiques relevées sur le terrain.

VI.2.4. Secteurs peu dynamiques, influencés par un ouvrage

Parmi les secteurs influencés par un ouvrage nous distinguons les tronçons à « fort » potentiel morphodynamique et les tronçons à faible potentiel morphodynamique. Cette sectorisation permettra en cas de restauration de cibler les tronçons potentiellement les plus dynamiques. Notons que cette sectorisation a été réalisée sur des critères uniquement hydrogéomorphologiques et que les enjeux présents le long du cours d'eau ne sont pas considérés.

VI.2.4.1. Tronçons peu dynamiques à faible potentiel morphodynamique

Caractéristiques hydrogéomorphologiques

Les tronçons peu dynamiques à faible potentiel morphodynamique sont ceux pour lesquels les ouvrages ont le plus grand impact. Les indices morphodynamiques sont très rares sur ces secteurs et les écoulements toujours « plats profonds » sont responsables d'un manque de diversité. Il n'est pas rare que ces tronçons doivent leur manque de dynamisme au fait qu'ils soient sous l'influence de plusieurs ouvrages. Ceci est le cas des tronçons sous l'influence des ouvrages qui ont une hauteur supérieure à la hauteur de chute des ouvrages en amont. Par conséquent malgré une opération d'ouverture des vannages sur un des ouvrages, la pente de la ligne conserve des valeurs très faibles ce qui empêche tout regain de puissance fluviale.

> Exemple le tronçon MQP20

Ce tronçon d'une longueur de 729 m adopte un style fluvial rectiligne (Is = 1,01) dans une vallée encaissée de plus de 60 m par rapport au plateau de Brie. A la date du 05/05/2011, l'écoulement était « plat lentique » avec une profondeur souvent supérieure à 200 cm. Le lit mineur du Grand Morin atteint 18 m de large sur ce secteur.

Les berges sont limoneuses et/ou argileuses alors que la ripisylve est dense et continue en rive droite mais discontinue en rive gauche. La conservation du seuil au niveau du moulin de Talmé confère à ce tronçon un long remous et ce malgré la destruction de la vanne. Aucune trace morphodynamique même ancienne n'a été observée sur ce tronçon. Seuls quelques embâcles très isolés laissent envisager un regain de dynamisme pendant les crues du Grand

Morin. Le fond très vaseux suggère que l'énergie du cours d'eau est si faible que ce secteur est soumis à des processus de décantation. Cette faible compétence est confirmée par la puissance fluviale spécifique actuelle qui est quasiment nulle (sans l'effet de chute). Cette puissance fluviale spécifique ne permet pas au cours d'eau de s'auto-ajuster dans le temps.

Figure 81: Tronçon à faible potentiel morphodynamique

VI.2.4.2. Tronçons peu dynamiques à « fort » potentiel morphodynamique

Caractéristiques hydrogéomorphologiques

Les tronçons à « fort » potentiel morphodynamique sont ceux qui conservent des caractéristiques physiques propices (pentes, puissances fluviales et nature des berges) à un réajustement morphologique malgré les fortes modifications subies par la rivière. Ces caractéristiques physiques se traduisent par la présence de traces morphodynamiques anciennes comme les zones d'érosion et d'accumulation, les embâcles ou encore l'état des berges et les faciès d'écoulement.

Sur ces tronçons, il convient de différencier les indices morphodynamiques liés au seul écoulement de la rivière de ceux liés aux conséquences des aménagements.

En effet l'ouverture des vannes abaisserait la ligne d'eau, déstabilisant les berges par suppression de la pression de l'eau et par dessication. Ce phénomène aurait des répercussions morphologiques comme en témoignent les zones d'érosion mises en évidence lors des ouvertures programmées dans le cadre de cette étude (fig. A). Ceci indique que la stabilité quasi généralisée des berges peut être liée à la présence des ouvrages et qu'il faut donc prendre en compte un réajustement des berges après les éventuels travaux de restaurations.

De même, les nombreuses protections de berge non conventionnelles parfois mal implantées par les riverains ou par les gestionnaires sont à l'origine de phénomènes de sous-tirage ou de réflexion des écoulements qui favorisent l'érosion des berges (fig. B).

Figure 82 : Conséquences morphodynamiques des ouvrages et des aménagements de berges

A : Lien entre la stabilité des berges et le niveau de la ligne d'eau : 1 = ligne d'eau vannes fermées, 2 = ligne d'eau vannes ouvertes et 3 = ajustement au nouveau niveau de base par érosion régressive. B : Protections de berges non conventionnelles avec pieux-bois et bâche. Noter la zone de souscavement qui favorise l'érosion.

Exemple tronçon MQP11

Ce tronçon est compris entre le moulin Guérard et le moulin de Génevray. Ici le Grand Morin s'écoule sur 2090 m et adopte un style fluvial méandriforme (ls = 1,51). A la date du 27/07/2011, l'écoulement était « plat courant » avec une profondeur souvent comprise entre 100 et 200 cm. La largeur du lit mineur du Grand Morin est généralement comprise entre 14 m et 18 m sur ce secteur.

Les berges sont limoneuses et parfois un peu graveleuses en pied alors que la ripisylve est dense et continue. Le fond alterne avec des zones graveleuses et des zones sablo-limoneuses. De nombreuses traces morphodynamiques plus ou moins anciennes ont été observées de façon ponctuelle sur tout le tronçon.

Le seuil hydraulique (ruine du moulin de Bicheret) est quasiment effacé. Le calcul de la puissance spécifique fluviale évaluée à plus de 16 W/m² (sans effet de chute) confirme le relativement « fort » potentiel morphodynamique de ce tronçon. Il est donc possible de qualifier ce secteur de zone témoin du « laisser-faire » puisque sans aucune intervention le cours d'eau a pu de lui-même rééquilibrer son profil longitudinal.

Figure 83: Tronçon à « fort » potentiel morphodynamique

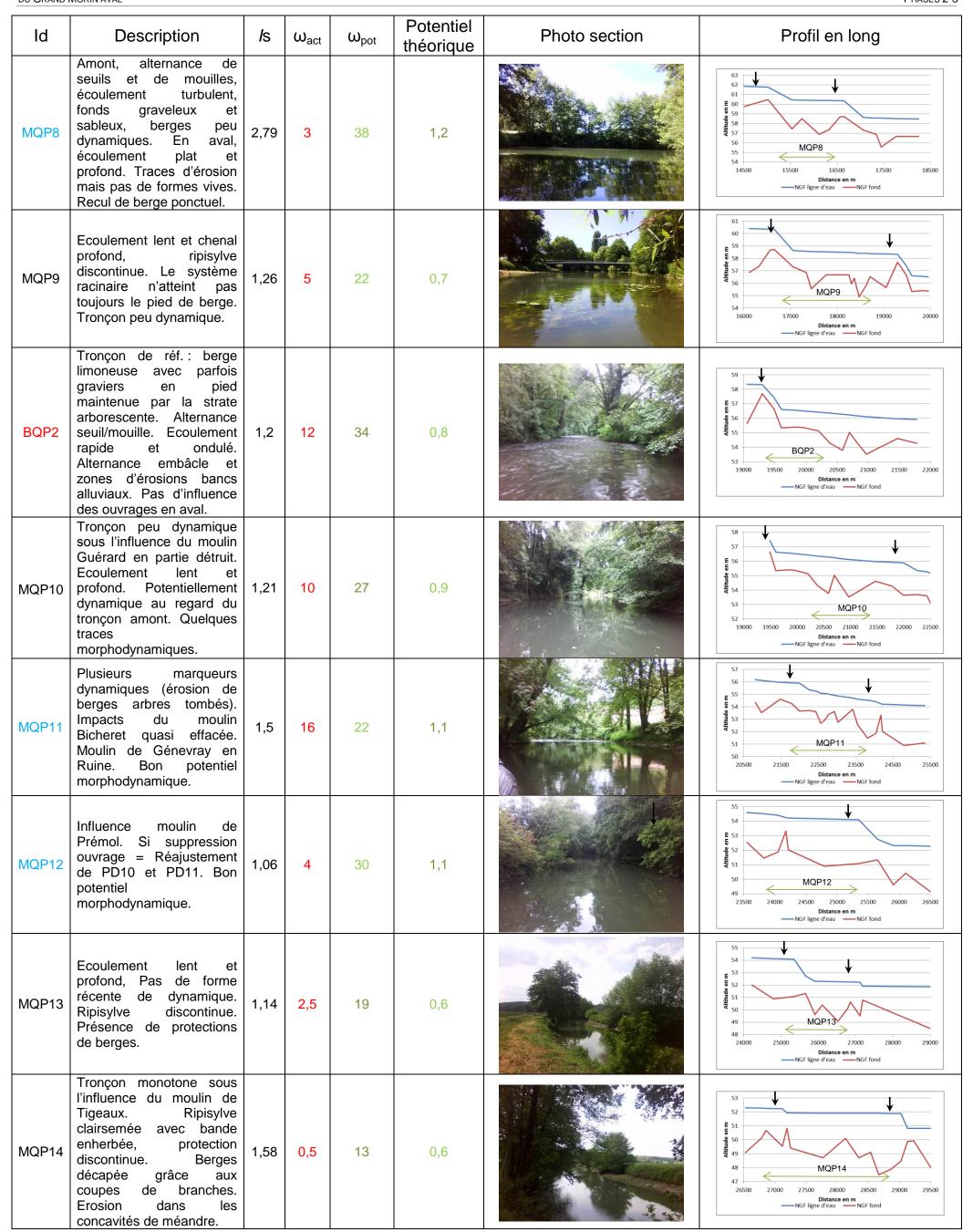
A : Ruines du seuil hydraulique du moulin de Bicheret. B : encoche d'érosion ponctuelle.

Parmi ces tronçons à « fort » potentiel dynamique, les tronçons les plus en amont sont caractérisés par des puissances spécifiques pouvant atteindre des valeurs supérieures à 30 W/m². La texture, la structure des berges et la qualité de la ripisylve ont donc un rôle primordial pour la mobilité du cours d'eau.

VI.2.5. Tableau de synthèse

Le tableau ci-après regroupe les différentes données synthétisant les caractéristiques hydrogéomorphologiques de tous les tronçons du Grand Morin. La sectorisation morphodynamique du cours d'eau (« préservé » c'est-à-dire tronçons de référence, « fort » potentiel morphodynamique et faible potentiel morphodynamique) est reprise avec le code couleur de la légende de la figure 38.

Le potentiel théorique, quant à lui, répondra à la classification et au code couleur suivant :


PT inférieur 1 : Potentiellement peu mobile PT entre 1 et 3 : Potentiellement mobile

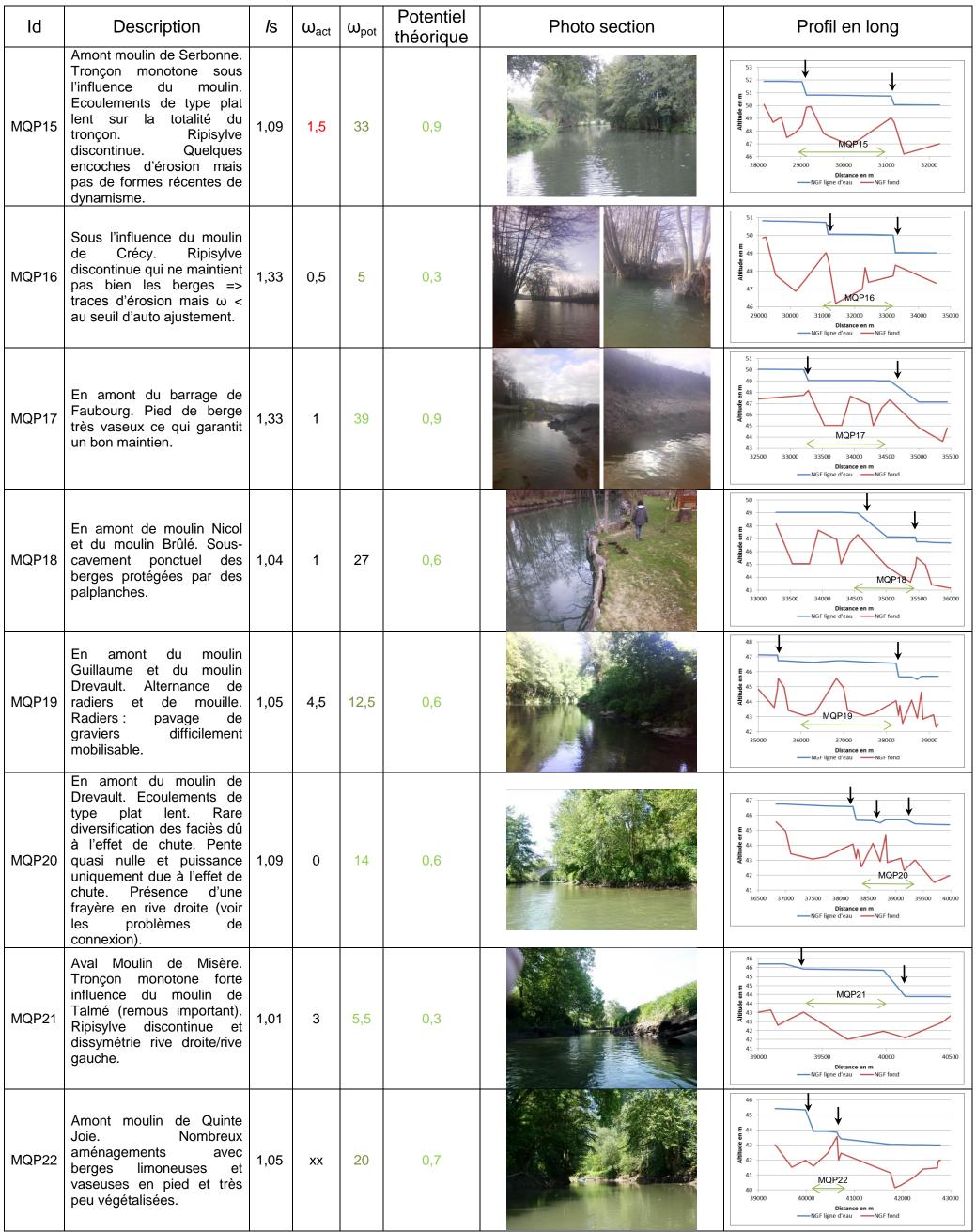

PT supérieur à 3 : Potentiellement très mobile (aucun tronçon n'est concerné).

Tableau 77 : Caractéristiques hydrogéomorphologiques du Grand Morin

Id	Description	<i>I</i> s	ω _{act}	ω _{pot}	Potentiel théorique	Photo section	Profil en long
BQP1	Tronçon de référence : faciès d'écoulement relativement diversifié, berges limoneuses et parfois graveleuses en pied, ripisylve multi-strate couche de fond graveleuse, nombreuses traces morphodynamiques. Tronçon peu dynamique à	1,10	17,4	49	1,6		76 75 74 77 70 89 77 70 90 1000 1500 2000 2000 3000 1500 1500 1500 1500 1500 1500 1
MQP2	traces morphodynamiques. Amont dynamique et aval sous influence du moulin Pontmoulin. Berges limonoargileuses avec indices de recul (protection de berges), Diminution longitudinale de la densité de la ripisylve.	1,22	46	26	1,2		NGF ligne d'eau NGF fond 74 73 72 77 70 70 69 68 MQP2 68 70 000 000 000 000 000 000 000 000 000
MQP3	Tronçon en amont de Coulommiers. Berges limoneuses avec vases en pied (influence du moulin de l'Arche). Ecoulement plat et profond, pas de diversité, ripisylve souvent plantée et pelouse, très peu de traces morphodynamiques.	1,13	18	14	0,6		73 72 MQP3 ## 71 970 970 10 10 10 10 10 10 10 10 10 10 10 10 10
MQP4	Tronçon peu dynamique sur le bras principal puis dynamique sur le bras droit de Coulommiers. En aval secteur à caractère dynamique. Bon maintien des berges par la végétation. Fonds sablograveleux en amont du moulin Trochard.	1,37	27	73	1,1		70 69 68 68 66 65 64 65 65 64 65 MQP4 63 6500 7000 7500 8000 8500 9000 9500 10000 Distance en m NGF ligne d'eau NGF fond
MQP5	Tronçon dynamique jusqu'à la confluence avec la « fausse rivière ». Traces morphodynamiques en amont malgré le bon maintien des berges (limoneuses) par la ripisylve. Fond graveleux, sous influence du moulin de Coubertin en aval.	1,18	17	33	0,9		67 66 67 68 69 60 61 8000 9000 10000 11000 12000 Distance en m NGF ligne d'eau NGF fond
MQP6	Berges limoneuses. Traces d'érosion entre les arbres, ripisylve uni-strate. En aval l'influence de la vanne de Mouroux et les protections de berges empêchent la dynamique.	1,10	11	46	1		65 64 100 1000 1200 1200 1200 1300 13500 14000 1
MQP7	Berges limoneuses et ripisylve discontinue. Protection de berges éparses surtout en rive concave.	1,25	7,5	47	1		65 64 63 62 9 not 61 59 58 MQP7 58 57 12500 13000 13500 14000 14500 15000 15500 16000 Distance en m

XX : profil inversé (cf. rôle des ouvrages)

ld	Description	<i>I</i> s	ω_{act}	ω_{pot}	Pot théorique	Photo section	Profil en long
MQP23	Amont moulin Liarry. Secteur peu dynamique, nombreuses protections de berges	1,03	1,2	18,5	0,7		44 43 40 40 40 40 40 40 40 40 40 40
MQP24	Amont porte à bateau. Alternance seuil/mouille avec ripisylve discontinue et accumulation vaseuse qui fixent les berges. Quelques bancs qui témoignent d'une petite dynamique latérale, à mettre en lien avec le vannage.	1,21	11	27	0,9		44 43 40 39 42 40 39 42500 43000 43500 44000 44500 45000 45500 Distance en m NGF ligne d'eau NGF fond
MQP25	Confluence Marne bras droit. Paléochenal de la Marne modifié, tendance à l'envasement généralisée, liée au manque de pente et à une section trop importante. N'est pas un axe d'écoulement naturel du Grand Morin.	1,3	3	24	0,8		44 43 44 43 40 40 4000 4500 4500 4500 4500 MGF fond
MQP26	Confluence bras gauche. Section plus petite avec écoulement plus rapide. Secteur dynamique. Ripisylve très clairsemée et souvent remplacée par l'urbanisation. Protections de berges non conventionnelles. Axe d'écoulement le plus naturel pour le Grand Morin.	1,2	25	39	0,9		44 43 42 41 40 0 500 1000 1500 2000 —NGF ligne d'eau —NGF fond
FR	Fausse rivière. Tronçon rectiligne en rive gauche de Coulommiers. Ecoulements peu profonds de type plat lent à plat courant (souvent dû à un effet de seuil). Ripisylve discontinue (strate arbustive). Fonds majoritairement sablograveleux.	1,05	28	40	XXX		69 68 67 99 99 66 65 64 0 500 1000 1500 2000 2500 3000 Distance en m NGF ligne d'eau NGF fond

XXX : Canal

VI.3. IMPACTS HYDROGEOMORPHOLOGIQUES DES OUVRAGES

VI.3.1. Impacts actuel des ouvrages sur le profil en long

VI.3.1.1. Impacts sur le profil en long général

La présence des ouvrages tend à diminuer la pente des fonds du lit, ceci est d'autant plus vrai que les ouvrages existent depuis longtemps. Si les ouvrages étaient arasés, la pente de la ligne d'énergie de la rivière serait augmentée, comme sa force érosive.

L'étagement du Grand Morin (proportion de pente annulée par les seuils et où l'écoulement n'est plus libre) atteint plus de 50%. La densité des ouvrages est parfois si forte que les zones de remous se rejoignent.

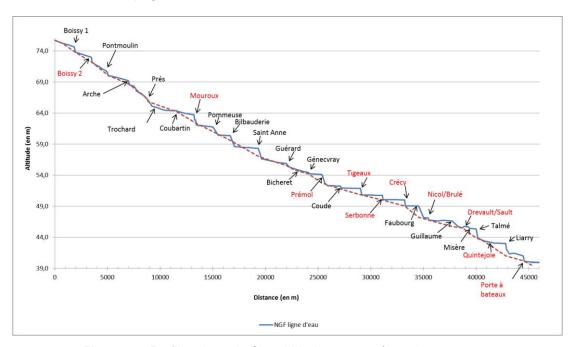
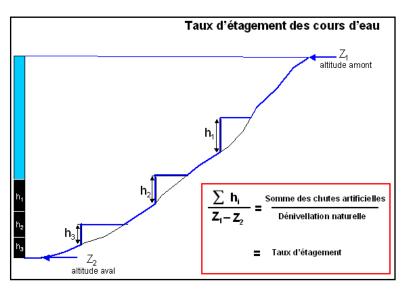



Figure 84 : Profil en long du Grand Morin avec repérage des ouvrages

Taux d'étagement

Le taux d'étagement représente la perte de pente naturelle liée à la présence des ouvrages transversaux sur un cours d'eau. Cet indicateur permet donc d'évaluer le niveau de fragmentation et d'artificialisation des d'eau et d'évaluer l'impact des ouvrages sur la continuité écologique l'hydromorphologie.

La conception de cet indicateur est résumée dans l'illustration.

Une étude réalisée récemment par la Délégation Interrégionale de l'ONEMA à Rennes (CHAPLAIS, 2010) montre que plus le taux d'étagement est élevé, plus l'écart au bon état écologique évalué sur le critère « peuplement piscicole » est important.

Les premiers résultats mis en évidence sur les peuplements piscicoles permettent de dégager une référence commune maximale correspondant à 40 % d'étagement, qui peut guider à moyen et long terme la recherche du Bon Etat sur les cours d'eau fortement étagés. Au niveau du Grand Morin, les taux d'étagements ont été calculés en situation d'ouvrages ouverts et fermés, et sont présentés dans le tableau ci-dessous :

Ouvrages fermésOuvrages ouvertsSomme des chutes artificielles (m)24,0816,32Dénivellation (m)34,7834,43Taux d'étagement (%)69,2447,40

Tableau 78 : Calcul du taux d'étagement sur le Grand Morin

Que l'on soit en situation d'ouvrages ouverts ou fermés, les taux d'étagement sont supérieurs à 40%. Le Grand Morin est donc fortement fragmenté et artificialisé, avec un peuplement piscicole dégradé.

Cependant, l'ouverture des ouvrages permet d'améliorer notablement la valeur du taux d'étagement, et ainsi de se rapprocher du Bon Etat.

VI.3.1.2. Impacts sur le profil en long en amont des ouvrages

Les seuils et barrages ont un effet « point dur ». Ils stabilisent le profil en long à leur amont, ce qui peut être bénéfique sur les cours d'eau en phase de forte incision (suite à des extractions par exemple, ce qui n'est pas le cas du Grand Morin). Au fur et à mesure du temps, le piégeage puis l'accumulation des sédiments fins dans la retenue de l'ouvrage provoque un exhaussement progressif du fond du lit qui se propage de l'aval vers l'amont.

En aval de l'ouvrage, on observe une érosion progressive qui est d'autant plus importante que la chute est forte.

Lors de l'ouverture des vannes, une érosion régressive peut se mettre en place, permettant l'ablation des sédiments bloqués dans la retenue. Ceci explique que de nombreux ouvrages ne sont pas totalement comblés.

Les ouvrages étant proches les uns des autres, l'érosion progressive liée au moulin en amont rejoint l'accumulation régressive liée au moulin en aval ce qui génère sur certains secteurs des profils en long inversés, c'est-à-dire qu'il existe parfois des contre-pentes.

VI.3.2. Impacts actuels des ouvrages sur le transport solide

Le Grand Morin ne présente pas de traces d'incision de ses fonds. Le transport solide est donc lié au déplacement de la charge de fond et à l'érosion de ses berges. Les berges sont cohésives, limono-argileuses voire argilo-limoneuses ce qui induit un transport solide faible. Les radiers grossiers sont rares, ils présentent une patine et un certain pavage ce qui témoigne de la faible fréquence (voire de l'absence) des événements susceptibles de les mettre en mouvement. Cette fraction grossière et sub-anguleuse est un héritage ancien (Pléistocène).

Le Grand Morin présente une succession d'ouvrages qui compartimentent le cours d'eau et qui constituent des obstacles à la dynamique sédimentaire. En amont des ouvrages, la charge grossière (lorsqu'elle a pu être observée) présente une forme de pavage. Elle est donc difficilement mobilisable. Une partie des sédiments fins (MES, matières en suspension) tend à s'accumuler par décantation en amont des ouvrages sans pour autant qu'ils soient totalement comblés (cf. figure ci-dessous). La relation entre la puissance de la rivière et la nature du matériau transporté permet le franchissement d'une partie de la charge solide (MES). Le transit sédimentaire est donc partiel. Cette perte de charge au droit de l'ouvrage

va inciter le cours d'eau à se recharger par creusement du fond juste en aval de l'ouvrage. Cette érosion est généralement immédiatement suivie d'un dépôt, qui ne présente plus qu'une partie de la charge solide observée à l'amont. Des signes de perturbation de la dynamique du cours d'eau sont éventuellement perceptibles : érosion progressive, simplification du style fluvial (cf. dernière figure page suivante).

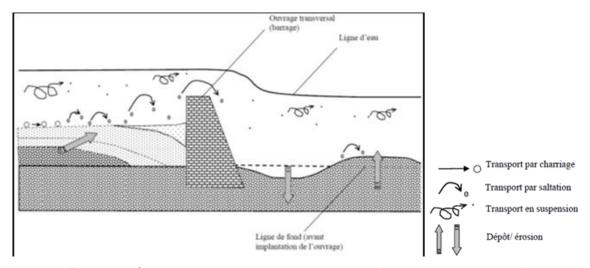


Figure 85 : Situation en crue d'un barrage non comblé par les sédiments par l'amont

Si les ouvrages étaient comblés (cf. figure ci-dessous), le transit sédimentaire pourrait être total sauf si on considère que la rupture de pente de l'ouvrage même comblé induit une réduction de la capacité naturelle de transport de la rivière.

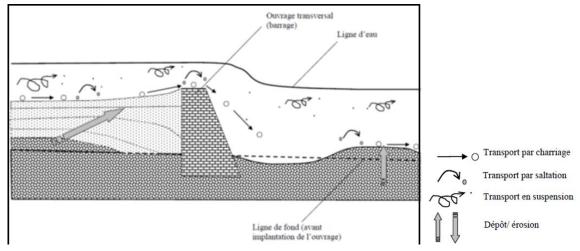
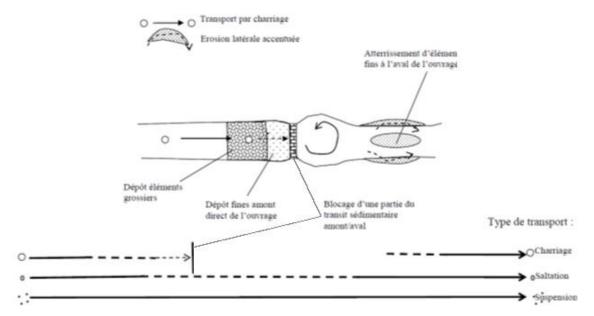
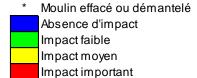


Figure 86 : Situation en crue d'un barrage comblé par les sédiments par l'amont




Figure 87 : Schématisation de l'influence d'un seuil sur les différentes formes du transport solide

Dans la partie amont, il a pu être observé quelques dépôts grossiers. Dans la partie aval, n'ont été observés que des dépôts très fins. Comme le transit longitudinal est perturbé, les seuls apports sont les apports transversaux : limons holocènes des berges et érosion des sols agricoles. La charge solide est donc majoritairement voire exclusivement fine et considérant ce mode de fonctionnement, les ouvrages ne sont pas un frein à son transport.

Le tableau suivant présente les impacts des ouvrages par rapport au transit sédimentaire.

Tableau 79 : Etat du transit sédimentaire par ouvrage

		PK		
N°	Nom de l'ouvrage	(km)	Actuel	Ouverture
		40.0		
1	La Bretonnière*	42,2		
2	Usine Boissyle Châtel	40,6		
3d	Pontmoulin* - Bras droit	39,1		
4	Moulin de l'Arche	37,1		
5	Moulin des Prés	35,7		
6	Moulin Trochard*	35,3		-
3g	Pontmoulin* - Bras gauche	41,4		-
8a	Déversoir 1 - Fausse Rivière	34,8		
8b	Clapet Sucrerie - Fausse Rivière	34,3		
8c	Déversoir 2 - Fausse Rivière	33,8		-
9	Moulin de Coubertin*	32,7		-
10	Clapet de Mouroux	31		
11	Barrage de Pommeuse*	29,1		-
12	La Billebauderie*	27,6		-
13a	Moulin Sainte-Anne - Bras gauche*	25		-
13b	Moulin Sainte-Anne - Bras central	25		
13c	Moulin Sainte-Anne - Bras droit	25		-
14	Moulin Guérard*	22,5		-
15	Moulin Bicheret*	21,8		-
16	Moulin de Génevray*	20,6		
17	Moulin de Prémol	18,3		
18	Moulin de Coude*	17		-
19	Moulin de Tigeaux	15,5		
20	Moulin de Serbonne	13,4		
21	Moulin de la Chapelle	11,3		
22	Barrage du Faubourg	10		
23	Moulin Jaune	7,8		
24	Moulin Guillaume	6,4		
25	Moulin de la Sault	6		
26	Moulin de Misère*	5,4		-
27	Moulin Talmé*	4,4		
28	Moulin Quintejoie	3,8		
29	Moulin Liarry*	2,5		
30	Porte à bateaux	0,8		
31	Bras gauche	0,5		
-	Confluence Marne	0		

Conséquences sédimentaires théoriques de l'effacement d'ouvrages

L'arasement des ouvrages provoquerait, outre un abaissement des niveaux d'eau, de la nappe alluviale éventuelle et une modification de la statique des berges, l'expression de l'érosion régressive et ainsi la reprise des matériaux grossiers ou fins stockés en amont des retenues.

Les conséquences possibles de cette remise en mouvement de la charge solide seraient un risque temporaire de réduction de la section d'écoulement, un risque pour les infrastructures en aval (risque d'obturation d'exutoires d'égouts, de déversoirs d'orages, de drains, etc.), un risque pour les infrastructures en amont (qui serait d'autant plus fort selon qu'il existe ou non une base de matériaux plus grossiers).

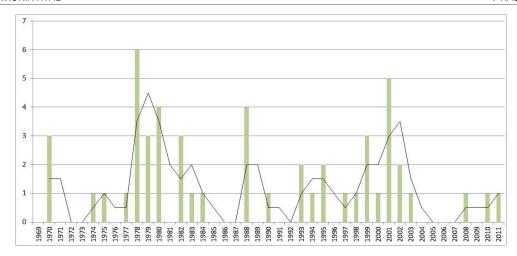
Un nouveau profil d'équilibre se mettrait en place. Les conséquences seraient globalement positives (continuité écologique et sédimentaire, possible réamorçage de la dynamique des trains de méandres), mais la quantité de sédiments libérés risquerait de s'accumuler préférentiellement au droit des ponts (pertes de charge) ou sur les zones de ruptures de pente (radiers, atterrissements, etc.). Leurs sections pourraient ainsi se voir diminuées de quelques centimètres à quelques décimètres. De plus, la finesse des éléments accumulés en partie supérieure à l'amont des points durs (limons et argiles) risquerait de provoquer le colmatage des éléments plus grossiers sédimentés en aval (disparition des niches écologiques).

L'abaissement du plan d'eau se traduit souvent par la reprise des processus d'érosion latérale dans l'emprise de l'ancienne retenue du fait notamment de la réapparition des circulations d'eau entre la nappe et la rivière en période de crue, mécanisme naturel qui fragilise les berges et favorise leur érosion (effet des vidanges de nappe à la décrue). Compte tenu du diagnostic des berges, cette reprise de l'érosion latérale serait limitée et pourrait être contenue par la prise de mesures adaptées (effacement progressif, gestion de la ripisylve, etc.).

VI.3.3. Impacts des ouvrages sur la dynamique latérale

L'analyse montre que les berges du Grand Morin évoluent de manière très lente (chutes d'arbres, anses d'érosion, sous-tirage, sous-cavement). Le phénomène particulier du sous-cavement est lié à la présence des ouvrages et au recalibrage. Les traces d'érosion vives sont rares. Le Grand-Morin est un cours d'eau en déséquilibre morphodynamique depuis plusieurs siècles.

L'hypothèse d'un regain d'énergie érosive récent semble peu probable car le nombre de crues dont le débit est supérieur au débit dominant n'a pas augmenté (sur la période de données disponible cf. tableau). Le graphique suivant ne montre pas de tendance à l'augmentation mais plutôt une cyclicité.


Les crues ne semblent pas plus rapides ni plus fréquentes. Il faut cependant noter qu'un pic de crue dans une année sèche sera plus efficace morphologiquement qu'une série de petites crues dans une année humide.

De plus, les cours d'eau étaient plus dynamiques au Moyen-Age (Petit Age de Glace), période du début de la mise en place des ouvrages qui impactent aujourd'hui la dynamique. Ces données vont davantage dans le sens d'un cours d'eau qui devient moins mobile.

Les formes d'érosion qui peuvent être parfois observées sont donc davantage liées aux aménagements de type protection de berges qui empêchent un processus globalement lent à un endroit et le rende d'autant plus efficace à leur amont ou aval immédiat.

Année	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
Nombre d'événements > Qd	0	3	0	0	0	1	1	Х	1	6	3
Année	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990
Nombre d'événements > Qd	4	0	3	1	1	0	0	0	4	0	1
Année	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
Nombre d'événements > Qd	0	0	2	1	2	0	1	1	3	1	5
Année	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	
Nombre d'événements > Od	2	1	0	0	0	0	1	0	1	1	

Ces observations sont confirmées par l'étude des cartes historiques qui a porté sur les 19 et 21 en siècles (cf. figure page suivante) et a reposé sur l'exploitation des cartes de la Cartothèque Nationale suivantes :

- carte d'Etat-Major ;
- · carte actuelle.

En dépit des erreurs classiques liées à ce type de cartographie diachronique (calculs des topographes, dessin de la carte, numérisation, calage), le Grand Morin n'a quasiment pas évolué depuis le 19ème siècle. On observe tout de même quelques changements de tracé sur certains secteurs comme Chauffry et en amont de Prémol. En effet, sur ces secteurs le style fluvial tend à devenir plus sinueux.

En dehors de ces secteurs, la rivière n'a connu que de faibles modifications à l'échelle du siècle. Les méandres actuels sont tous déjà présents sur la carte d'Etat-Major et n'ont guère évolué. L'étude de la carte de Cassini confirme ce constat, puisque les trains de méandres présents aujourd'hui l'étaient déjà sur ce document. Les changements de tracé les plus flagrants sont très locaux et sont liés à l'abandon, à la modification des moulins (bras de décharge et déversoir) ou aux aménagements hydrauliques de la fin du 19ème siècle.

La construction des moulins étant bien antérieure aux premières cartes précises de la région il est important de noter que le fuseau de mobilité établi depuis le 19^{ème} siècle ne rend pas compte du tracé initial du Grand Morin (avant l'implantation des ouvrages hydrauliques).

ETUDE HYDRAULIQUE ET ENVIRONNEMENTALE

SYNDICAT MIXTE DU GRAND MORIN

DU GRAND MORIN AVAL

PHASES 2-3

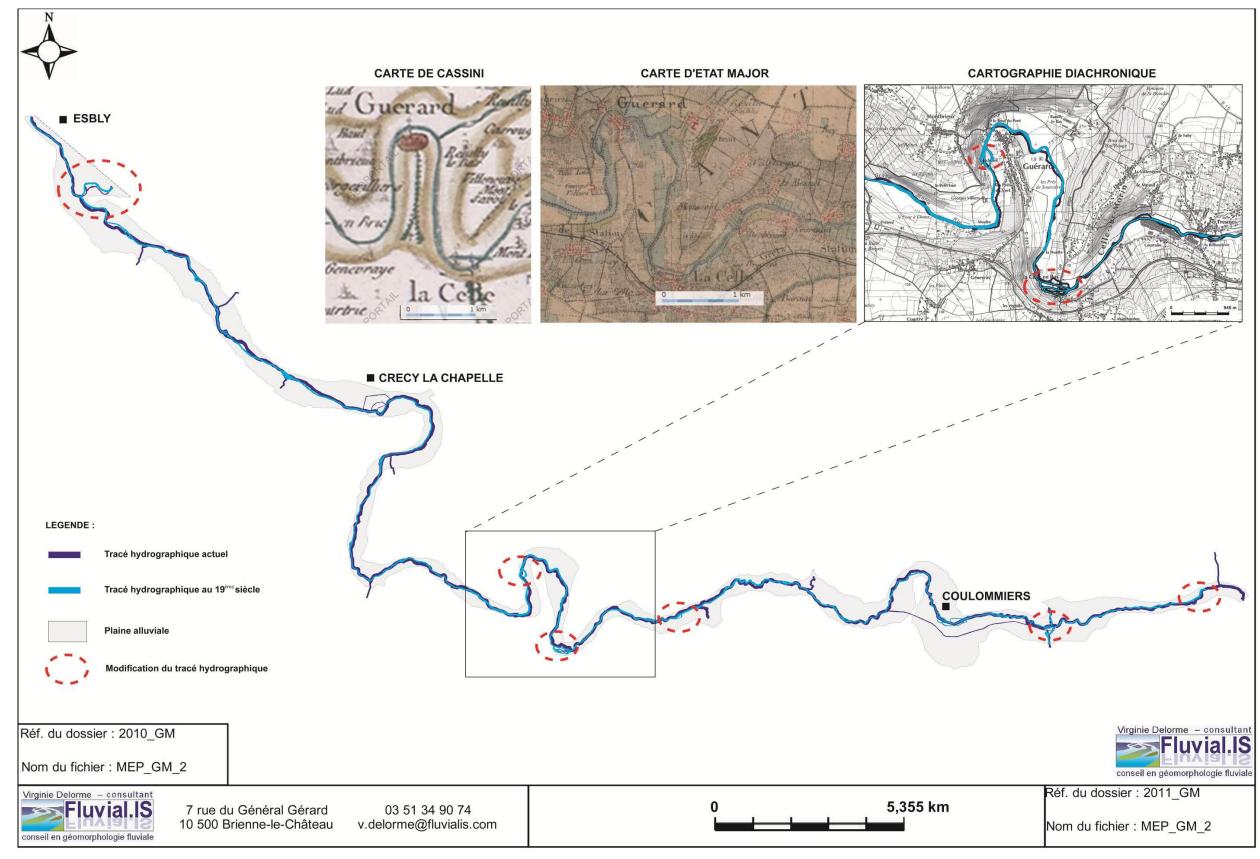


Figure 88 : Evolution historique du tracé du Grand Morin

VI.4. CONCLUSION DU DIAGNOSTIC HYDROGÉOMORPHOLOGIQUE DU GRAND MORIN

Le Grand Morin est une rivière très modérée dans ses énergies et dans ses formes, en témoigne le faible nombre de tronçons véritablement dynamiques (2/29) et de tronçons à « fort » potentiel morphodynamique (8/29). Ce manque de dynamisme qui rend le cours d'eau peu mobile est à mettre en lien direct avec ses caractéristiques naturelles ainsi qu'avec le surcalibrage de la rivière et la succession des ouvrages hydrauliques.

Néanmoins, même sur les tronçons influencés par un ouvrage, des indices morphodynamiques relevés sur le terrain indiquent que cette rivière n'est pas figée à long terme. Ainsi quel que soit le degré de dynamisme ou le tronçon considéré, nous observons que les processus qui déterminent la mobilité du Grand Morin sont les mêmes (cf. figure cidessous).

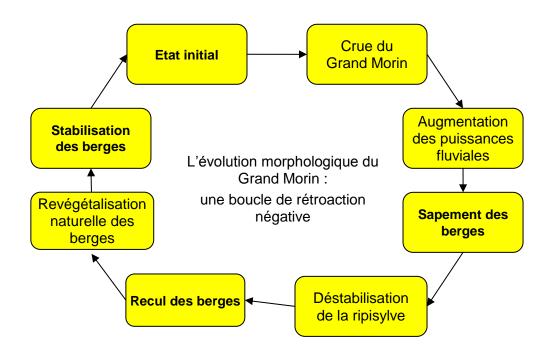


Figure 89 : Evolution hydrogéomorphologique du Grand-Morin

Le diagnostic hydrogéomorphologique du Grand Morin permet d'évaluer son potentiel de mobilité. C'est de ce potentiel que dépendent les orientations à choisir en termes de travaux de restauration. Ainsi les secteurs à caractère dynamique ou les secteurs à « fort » potentiel morphodynamique nécessiteront des coûts de restauration moins élevés que les secteurs à faible potentiel morphodynamique et sont peut-être ceux qui pourront être prioritaires selon les actions à envisager.

VII. CONFLUENCE AVEC LA MARNE

Au niveau de la porte à bateau, le Grand Morin est artificiellement maintenu séparé en deux bras : bras droit et bras gauche. L'évolution du tracé hydrographique sur ce secteur est complexe à la fois pour des raisons naturelles et pour des raisons anthropiques.

VII.1. ETUDE HISTORIQUE ET GÉOLOGIQUE

VII.1.1. Capture du Grand Morin par la Marne

A l'ouest du confluent actuel du Grand Morin et de la Marne, l'ancienne vallée du Grand Morin dessine un méandre abandonné (cf. figure 15), aujourd'hui drainée dans sa partie amont par le ru des Prés et dans sa partie aval par le ru du Rapinet. L'abandon de cette vallée est lié à la capture du Grand Morin par la Marne au Tardiglaciaire (Pastre et Leroyer, 1997). Le Tardiglaciaire est caractérisé par un contexte morphoclimatique exacerbant la sédimentation sablo-limoneuse dans les plaines alluviales. Cette crise morphoclimatique a touché la vallée du Grand Morin et la vallée de la Marne, offrant à ces deux cours d'eau un style fluvial à chenaux anastomosés. Ce style fluvial caractérisé par un déséquilibre entre la fourniture sédimentaire et le débit liquide tend à exhausser les lits des cours d'eau et à favoriser les divagations. Ce sont ces conditions qui ont favorisé la capture du Grand Morin par la Marne. Le Grand Morin s'écoule donc depuis l'Holocène sur d'anciens chenaux de la Marne

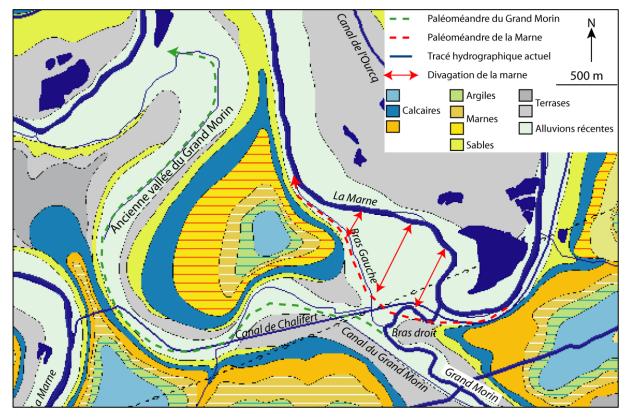


Figure 90 : Capture du Grand Morin par la Marne

La légende de la carte géologique a été simplifiée (voir la notice du BRGM; Caudron et Labourguigne).

A cette modification naturelle du tracé hydrographique sur le long terme il est nécessaire de préciser les aménagements hydrauliques qui ont influencé l'hydrographie du Grand Morin sur le court terme.

VII.1.2. Les grands aménagements hydrauliques au niveau de la confluence

Le canal de Chalifert a été construit entre 1837 et 1846, il relie Meaux à Chalifert en court-circuitant deux boucles de la Marne et passe au-dessus du Grand Morin grâce à un pont canal. Le canal du Grand Morin, contemporain au canal de Chalifert, a été construit dans le but de servir de branche alimentaire. Aujourd'hui, le canal du Grand Morin n'a plus d'utilité et a été comblé sur ses 200 premiers mètres, depuis la construction du barrage de Meaux qui garantit un niveau d'eau stable dans le canal de Chalifert. Ces canaux sont protégés par des remblais ce qui structure encore davantage la plaine alluviale déjà très urbanisée au niveau de la confluence. Il est probable que le bras droit ait été déplacé lors de la construction de ces canaux. En effet, à l'origine le canal de Chalifert rejoignait le bras droit du Grand Morin avant de rejoindre la Marne. Mais lors de son prolongement jusque Meaux cette jonction n'avait plus lieu d'être et le chenal du Grand Morin a été déplacé vers le sud sûrement pour laisser une place suffisante entre la Marne et le canal.

La présence du bras gauche, qui s'écoule sur un paléochenal de la Marne, est à mettre en lien avec le moulin d'Esbly. En effet, cet ouvrage peut expliquer le maintien en eau du bras gauche car ce dernier profite de la dérivation des écoulements par la porte à bateau. L'âge de ce moulin n'est pas bien déterminé puisqu'aucune carte historique antérieure aux années 1900 ne le mentionne. Néanmoins il est certain que ce moulin fonctionnait encore au début du XXème siècle (Bazin, 1907).

VII.1.3. Etude des cartes historiques

Les différentes sources historiques permettent de lier la chronologie des aménagements hydrauliques avec l'évolution du tracé du Grand Morin.

La carte de Cassini ne différencie pas le bras droit du bras gauche. La distinction est faite avec la carte d'Etat-Major (1825/1866) qui donne au bras gauche le nom de « Bras du Grand Morin » ou simplement « Grand Morin ». La distinction s'inverse avec les monographies communales des communes d'Esbly et de Condé-Sainte-Libiaire datant de 1889 (postérieure à la construction des canaux ; cf. figure 16) qui nomment le bras gauche « bras d'Esbly » et le bras droit « Grand Morin ».

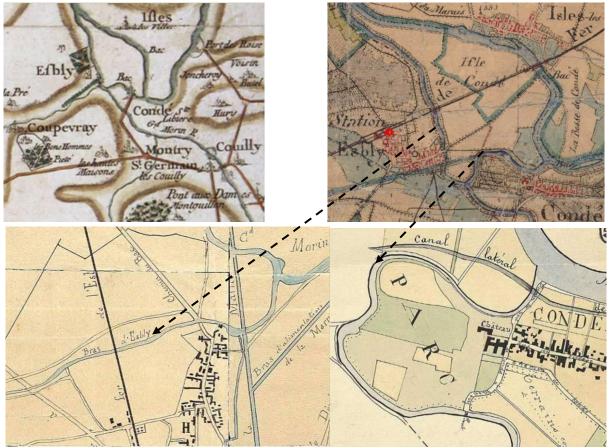


Figure 91 : Archives historiques au niveau de la confluence

A : Carte de Cassini. Noter la présence de la diffluence et l'absence d'aménagement ; B : Carte d'Etat-Major. Noter la présence du canal de Chalifert encore inachevé, rejoignant le bras droit du Grand Morin ; C : Monographie communale d'Esbly et détail sur le bras gauche (« bras d'Esbly) ; D : Monographie communale de Condé-Sainte-Libiaire et détail sur le bras droit. Noter l'achèvement du canal de Chalifert qui ne rejoint plus le Grand Morin.

VII.1.4. Synthèse

Si le Grand Morin s'écoule dans des paléochenaux de la Marne depuis sa capture par la Marne, la distinction du bras naturel n'est pas aisée. Une des clés de compréhension de cette complexité passe par la description hydrogéomorphologique de ces deux tronçons.

VII.2. ETUDE MORPHODYNAMIQUE DE LA CONFLUENCE

Dans la zone de confluence avec la Marne, les écoulements du Grand Morin sont conditionnés par le niveau de la Marne. D'un point de vue morphodynamique ces deux bras sont très différents.

VII.2.1. Bras gauche

Le bras gauche s'écoule vers le nord-nord-ouest sur 2250 m en passant sous le canal de Chalifert et en traversant un quartier résidentiel avant de rejoindre la Marne 3 km en aval de la confluence du bras droit. Le canal de Chalifert cloisonne fortement la plaine alluviale dans ce secteur. Ce tronçon est globalement caractérisé par un chenal sinueux (ls = 1,2) mais il faut noter la présence de plusieurs secteurs bien rectilignes. Depuis la diffluence au niveau de la porte à bateau, la section est beaucoup plus restreinte ce qui favorise un écoulement plus rapide au faciès « ondulé » (environ 0,3 m/s). Ce bras est beaucoup plus dynamique que le bras droit. En effet de nombreuses traces d'érosion vive, d'embâcles sont présentes

sur tout le linéaire. D'un point de vue morphodynamique, ce bras ressemble aux tronçons références (D1 et D2). D'ailleurs ce regain de dynamisme se perçoit bien avec l'état des berges. En effet face aux nombreuses traces d'érosion, les riverains cherchent à fixer les berges de façon non conventionnelle. Ainsi, il n'est pas rare de rencontrer des déchets végétaux en guise de fascine, des tas de gravats en guise d'enrochement qui alternent avec des protections plus classiques comme les palplanches et les murs de béton. Au final, par endroits, ces aménagements ont recréé une diversité des écoulements qui renforce le caractère dynamique de ce tronçon.

Figure 92 : Confluence du bras gauche, un secteur dynamique

A : Vue transversale du bras gauche avec des berges murées. B : Berge érodée à texture limono-argileuse avec absence de ripisylve. C : Aménagement non conventionnel des berges. D : Fascine non conventionnelle construite avec des déchets végétaux.

Le lit mineur du Grand Morin est ici assez restreint. Ceci est renforcé par la présence de nombreuses berges bétonnées qui chenalisent le cours d'eau. Pendant les crues, le bras gauche ne peut donc pas dissiper facilement son énergie par des débordements et les écoulements sont concentrés dans le lit mineur ce qui est responsable des nombreuses formes d'érosion observées sur ce secteur.

VII.2.2. Bras droit

Le bras droit est un bief artificiel dont l'origine est liée au château de Condé. Ce dernier s'écoule vers l'est sur 940 m avant de rejoindre la Marne. Il est caractérisé par un style très sinueux (ls = 1,3) et un écoulement lent et profond. Son lit est très modifié (curage, recalibrage, épis hydrauliques) ce qui donne à la section un profil en U avec des berges verticales de plus de 5 m. La topographie en rive droite (colline) et le merlon du canal de Chalifert en rive gauche empêchent les débordements à cet endroit.

En rive gauche, les aménagements de 1984 (BCEOM) ont nécessité des travaux de terrassements pour faciliter le passage des engins de chantier. Ceci a permis de créer un

replat dans la topographie qui peut être assimilé à un lit moyen artificiel. Des vestiges de bassins piscicoles construits sur ce lit moyen témoignent d'un ancien fonctionnement. Ce lit semble ne plus être fonctionnel depuis les travaux curage de 1984 comme le montre les laisses de crue qui ne dépassent pas la berge en rive gauche.

Les berges en rive droite sont fixées sur la quasi-totalité du tronçon grâce à des planches en bois maintenues par des pieux..

Le Grand Morin rejoint la Marne en passant sous le canal de Chalifert grâce à un exutoire artificiel. Cet exutoire est le seul point de communication entre le lit majeur de la Marne et celui du Grand Morin.

Les épis hydrauliques de taille pluri-métriques construits en rive droite forcent les écoulements en direction de la Marne. La création de ces épis hydrauliques avait pour objectif de réduire l'envasement lié aux crues de la Marne dans ce secteur tout en favorisant l'écoulement du Grand Morin et en prenant en compte l'impact du pont canal sur les écoulements (BCEOM-LCHF, 1984). On peut s'interroger sur l'efficacité de ces ouvrages car étant donné la lenteur des écoulements (faciès lentique) le secteur subit un envasement par des phénomènes de décantation (pas seulement lors des plus grosses crues). En effet, en rive gauche, au niveau de l'épi n°3, nous avons évalué un taux de sédimentation de 2,7 cm/an au maximum soit 1,36 m en 50 ans. Cependant, au droit des enrochements de l'épi le plancher alluvial est caractérisé par une petite incision évaluée à 6 mm/an. Cette zone d'érosion témoigne de l'efficacité des aménagements uniquement en rive droite et ne laisse pas présager d'un risque d'affouillement de l'ouvrage à moyen terme.

Le pont canal est busé ce qui limite une trop grande remontée des eaux de la marne dans le chenal du Grand Morin. Mais la perte de charge induite par l'ouvrage favorise la sédimentation au droit du pont-canal (cf. figure 18). A la confluence l'écoulement est plat lentique et profond.

NGF 1984 NGF en 2011 Vitesse de sédimentation

39,835 m 39,1 m 2,7 cm/an

Sur ce secteur les écoulements sont donc en lien direct avec le niveau de la Marne. De manière générale, les crues du grand Morin sont plus rapides que les crues de la Marne ce qui est propice à l'évacuation des crues du Grand Morin. Dans le cas contraire l'évacuation des crues est impossible et la seule solution est d'abaisser le niveau de la Marne grâce au barrage de Trilbardou. Cette manipulation est rendue difficile à cause des caractéristiques du barrage de Trilbardou. En effet la manipulation des aiguilles du barrage étant longue et périlleuse, l'ajustement du niveau d'eau n'est pas souvent envisagé. D'autant plus que ce barrage tient un rôle de première importance dans l'alimentation de canal de l'Ourcq.

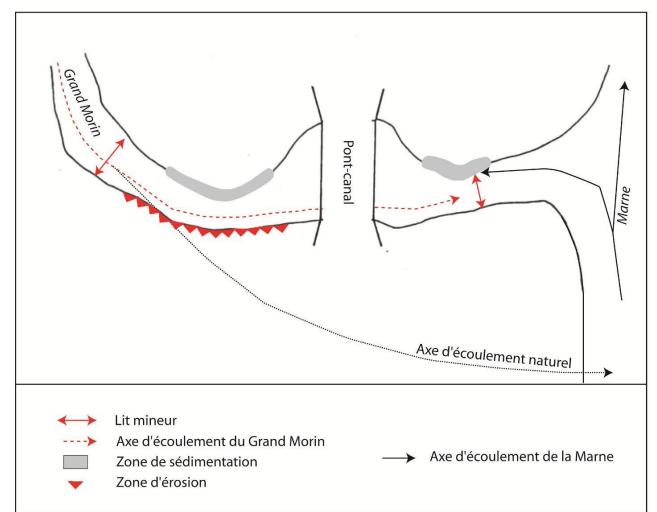
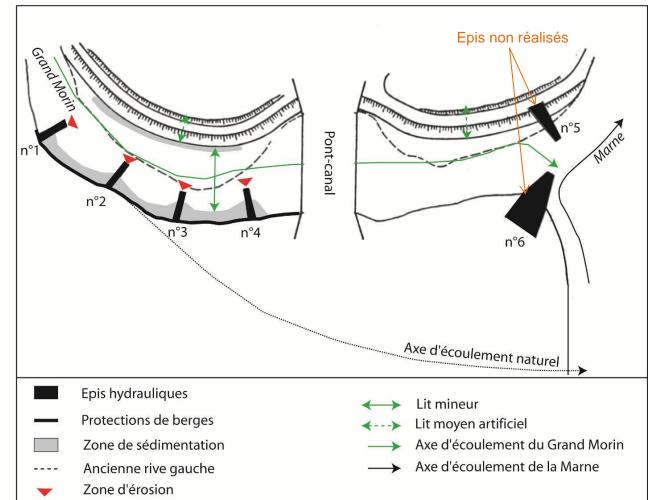


Figure 93 : Confluence du bras droit, un secteur très aménagé


A : Les protections de berges en rive droites. B : Epis hydrauliques en rive droite. C : Les buses du pont canal de Chalifert. D : La confluence, vue depuis le pont canal.

La toponymie locale (rue du Morin) à l'est de la confluence ainsi que la topographie qui conserve les traces des différentes unités morphologiques d'un ancien bras nous invite à considérer une ancienne confluence entre le Grand Morin et la Marne plus loin vers l'est, peut-être avant la construction des canaux.

Avant 1970

Après aménagements (1970/1984)

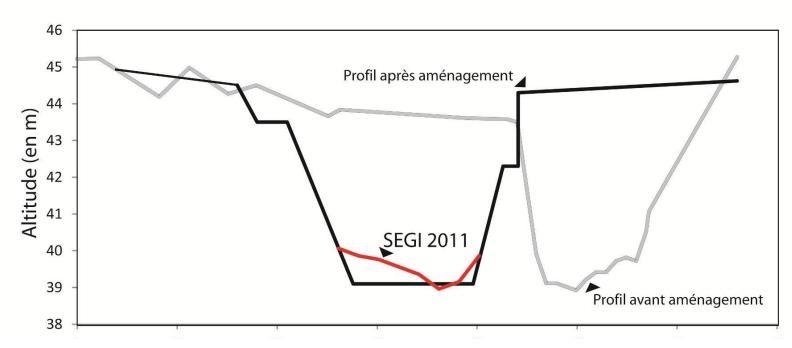


Figure 94 : Aménagement de la confluence

VII.2.3. Synthèse

Les deux émissaires du Grand Morin au niveau de la confluence s'écoulent sur un paléochenal de la Marne. Sur la base de nos relevés de terrain, les indices morphodynamiques montrent que le bras gauche est le bras d'écoulement le plus cohérent du Grand Morin et que le bras droit est maintenu en eau grâce à l'existence de la porte à bateau pour des raisons hydrauliques.

En effet, la séparation des écoulements est liée à l'évacuation des crues car étant donné l'urbanisation sur les rives du bras gauche, il est nécessaire de réguler les débits sur ce tronçon grâce au bras droit. La section très large du bras droit lui garantit une bonne capacité mais le déficit de pente restreint considérablement les puissances spécifiques fluviales à cet endroit (surtout lors des crues de la Marne) ce qui explique la tendance à l'envasement. Ce secteur est problématique car en cas de crue simultanée du Grand Morin et de la Marne, la seule solution est d'inonder la vallée du Grand Morin.

VIII. MILIEU HUMAIN

VIII.1. POPULATION

La population totale des communes situées sur le cours du Grand Morin aval est de 53 279 habitants en 2008. La population sur la zone d'étude a augmenté de 21.7% entre 1990 et 2008, témoignant d'un certain dynamisme.

Cependant on observe une légère diminution (-1%) entre 2007 et 2008.

Tableau 80 : Evolution de la population de la zone d'étude entre 1990 et 2008 (source : INSEE)

	1990	1999	2006	2007	2008	Variation entre 1990 et 2008 (%)
Boissy-le-Châtel	2 366	2 661	3 062	3 077	3 069	29,7
Chailly-en-Brie	926	1 180	1 566	1 559	1 382	49,2
Condé-Sainte-Libiaire	1 365	1 344	1 418	1 429	1 418	3,9
Couilly Pont-aux-Dames	1 635	1 897	2 050	2 074	2 074	26,9
Coulommiers	13 087	13 852	14 200	14 024	13 723	4,8
Crécy-la-Chapelle	3 222	3 851	4 096	4 122	4 083	26,7
Dammartin-sur-Tigeaux	593	731	854	863	846	42,7
Esbly	4 488	5 131	5 570	5 612	5 602	24,8
Guérard	1 781	1 970	2 159	2 203	2 203	23,7
La Celle-sur-Morin	951	1 106	1 197	1 198	1 206	26,8
Montry	2 781	3 066	3 240	3 250	3 231	16,2
Mouroux	3 594	4 201	4 660	4 721	4 737	31,8
Pommeuse	1 808	2 476	2 741	2 721	2 693	48,9
Saint-Germain-sur-Morin	2 356	2 755	3 326	3 411	3 406	44,6
Tigeaux	343	366	375	376	375	9,3
Villiers-sur-Morin	1 358	1 527	1 700	1 707	1 741	28,2
Voulangis	1 113	1 261	1 433	1 467	1 490	33,9
TOTAL	43 767	49 375	53 647	53 814	53 279	21,7

La population est inégalement répartie sur la zone d'étude. La densité est plus élevée sur les communes situées sur le cours même du Grand Morin que sur les communes adjacentes. On a également une légère augmentation de densité en allant vers l'aval (à l'exception de Coulommiers).

Les plus grosses agglomérations de la zone sont les suivantes:

- Coulommiers (13723 hab);
- Esbly (5602 hab);
- Mouroux (4737 hab).

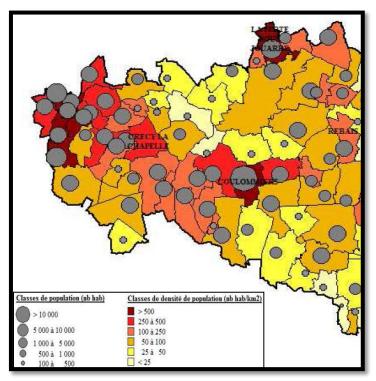


Figure 95 : Population et densité de population sur le territoire en 2009 (source : SAGE)

VIII.2. ACTIVITES

VIII.2.1. Recensement des installations classées

D'après le Code de l'Environnement, les installations classées pour la protection de l'environnement sont « toutes les installations [...] pouvant présenter des dangers ou des inconvénients pour la commodité, la santé, la sécurité, la salubrité publique, l'agriculture, l'environnement, la conservation des sites et des monuments ainsi que des éléments du patrimoine archéologique ». Ainsi, selon les dangers qu'elles représentent, ces installations sont soumises à déclaration ou à autorisation et doivent respecter les prescriptions établies dans l'arrêté préfectoral.

Les Installations Classées Pour l'Environnement sur notre zone d'étude sont au nombre de 12. La moitié d'entre elles sont situées à Coulommiers.

Tableau 81 : Recensement des ICPE sur la zone d'étude

Nom de l'exploitant	Autorisation / Déclaration	Commune	Type d'activité	Emissions polluantes déclarées
DEVOGELE CHAILLY EN BRIE	А	Chailly-en-Brie	Textile, cuir et peaux	-
SACPA CHAILLY EN BRIE	А	Chailly-en-Brie	Chiens (élevage, vente, transit, garde, fourrière)	-
AMCOR FLEXIBLES SPS	A et D	Coulommiers	Industrie du papier et du carton	Composés organiques volatiles non méthaniques, dichlorométhane, production de déchets dangereux
BOUCHE DISTRIBUTION LECLERC	D	Coulommiers	Industrie pétrolière, gaz naturel	Liquides inflammables
EURO CASSE	А	Coulommiers	Récupération, dépôts de ferrailles	Stockage de métaux
SAVER PLUS	A et D	Coulommiers	Industries diverses	Emploi ou stockage de toxiques, acide acétique, formique, chlorhydrique, etc.
TOTAL - T RELAIS DES CAPUCINS	D	Coulommiers	Vente et réparation automobile	Liquides inflammables
TOURNEUR FRERES	Α	Coulommiers	Broyage, concassage, criblage (végétaux)	-
VALFRANCE	A et D	Esbly	Stockage de céréales	Emploi ou stockage de toxiques, polychlorobiphényles, terphényles, engrais solides simples ou composés à base de nitrates d'ammonium
MAHE MICHEL	А	Boutigny	Bovins (élevage, vente, transit, etc)	-
BENNES SERVICES	A et D	Quincy-voisins	Regroupement d'OM, DIB	Liquides inflammables, déchets industriels, métaux
SAVOY TECHNOLOGY	A et D	Quincy-voisins	Mécanique, électrique, traitement de surface	Halogènes et autres liquides, métaux, matières plastiques résines

VIII.2.2. Activité agricole

VIII.2.2.1. Tendance générale en Seine-et-Marne

L'activité agricole de Seine-et-Marne a subi de profondes modifications depuis les années 1960. Traditionnellement tournés vers un système de polyculture-élevage, les exploitants agricoles du bassin se sont tournés vers un système extensif fondé sur les grandes cultures céréalières (figures page suivante).

Sur la période 1970-1988, les superficies affectées aux cultures fourragères et à la surface toujours en herbe (STH) ont fortement diminué, traduisant une diminution de l'élevage (figures page suivante).

Enfin, le nombre d'exploitations est en diminution (590 ont disparu en 10ans) mais leur taille tend à augmenter : les grandes exploitations représentent 56% des exploitations en 2000 contre 64% en 2010.

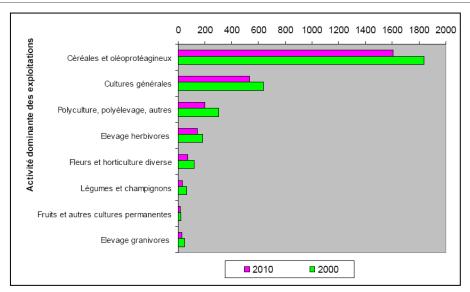


Figure 96 : Activités dominantes des exploitations de Seine-et-Marne (source : Agreste 2011)

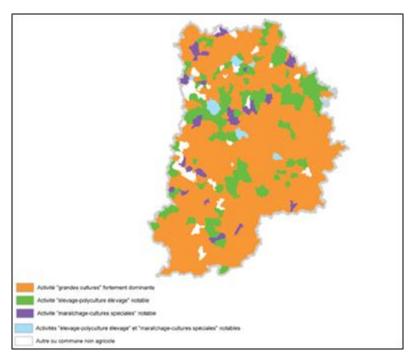


Figure 97 : Activités dominantes des communes de Seine-et-Marne (source : Agreste 2011)

Aujourd'hui, le Seine-et-Marne compte 2650 exploitations agricoles, soit la moitié des exploitations d'Ile-de-France. Au total, les exploitations agricoles s'étendent sur 342 000 hectares, soit 58% de la surface totale du département. L'agriculture est donc un secteur économique important (Source : Agreste 2011).

A noter que cette activité agricole est inégalement répartie sur tout le territoire. L'urbanisation est plus forte dans la partie ouest, avec par conséquent une activité agricole moindre (figure ci-dessous).

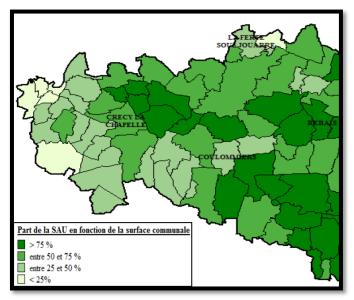


Figure 98 : Surface agricole utile du territoire (source : SAGE)

VIII.2.2.2. Détail de la zone d'étude

En 2000, les communes de la zone d'étude comptaient 77 exploitations avec 135 Unités de Travail Annuel (UTA). La répartition de l'assolement sur une surface de 6304 hectares est la suivante :

- 90% de terres arables, soit 5695 hectares ;
- 9% de prairies permanentes, soit 543 hectares.

L'activité « élevage », quant à elle, est quasi-inexistante.

Tableau 82 : Répartition de l'assolement en 2000 sur la zone d'étude (source : Agreste)

	Namahaa	Nombre total	Superficie	Terres la	abourables	Surface touj	ours en herbe	Namahaa
Commune	Nombre d'exploita -tions	d'actifs sur les exploitations (en UTA)	agricole utilisée des exploitations (ha)	Superficie (ha)	Pourcentage de la SAU (%)	Superficie (ha)	Pourcentage de la SAU (%)	Nombre total de vaches
Boissy-le-Châtel	7	34	491	476	96,95	12	2,44	0
Chailly-en-Brie	14	30	1324	1206	91,09	109	8,23	С
Condé-Sainte- Libiaire	0	0	0	0	-	0	-	0
Couilly Pont-aux- Dames	С	С	С	С	С	С	С	0
Coulommiers	С	С	С	С	С	С	С	0
Crécy-la-Chapelle	12	18	987	948	96,05	28	2,84	С
Dammartin-sur- Tigeaux	4	5	419	414	98,81	С	С	С
Esbly	С	С	С	С	С	С	С	0
Guérard	13	17	901	749	83,13	151	16,76	С
La Celle-sur-Morin	3	3	316	281	88,92	С	С	С
Montry	С	С	С	С	С	С	С	0
Mouroux	11	11	450	395	87,78	55	12,22	0
Pommeuse	5	8	747	586	78,45	160	21,42	С
Saint-Germain- sur-Morin	С	С	С	С	С	С	С	0
Tigeaux	С	С	С	С	С	С	С	0
Villiers-sur-Morin	С	С	С	С	С	С	С	0
Voulangis	8	9	669	640	95,67	28	4,19	С
TOTAL	77	135	6304	5695	90.33	543	8.63	0

c = donnée confidentielle, en application des règles du secret statistique.

VIII.3. USAGES DE L'EAU

VIII.3.1. Prélèvements

VIII.3.1.1. Alimentation en eau potable

La grande majorité des prélèvements en eau potable se fait par les nappes souterraines du tertiaire. Seule la commune de Villiers-sur-Morin est alimentée par de l'eau de surface provenant de la Dhuys et de la Marne.

La zone d'étude compte 8 captages en eaux souterraines, dont la moitié à Coulommiers ; aucun de ceux-ci ne bénéficie d'un DUP. (source : SAGE)

Code Dpt Station Niveau capté Usage Boissy le Châtel 1858X0008/F Calcaires de St Ouen AEP Condé Ste Libiaire 1844X0088/P1 Alluvions AEP Couilly Pont aux Calcaires du Lutétien 1844X0037/F AEP Dames Coulommiers 1 AEP 1857X0024/F1 Calcaires du Lutétien Coulommiers 2 1857X0028/F2 Calcaires du Lutétien AEP 1857X0030/P2 Calcaires de St Ouen Coulommiers 3 AEP Coulommiers 4 1857X0033/P6 Calcaires de St Ouen AEP Voulangis 1855X0017/P1 Calcaires du Lutétien AEP

Tableau 83 : Liste des captages eau potable sur la zone d'études (source : SAGE)

Les captages qui alimentent la plus grande population sur le territoire d'études sont Condé-Sainte-Libiaire (16 000 habitants) et Coulommiers (15 000 habitants). La répartition des captages sur la zone d'étude est présentée ci-dessous.

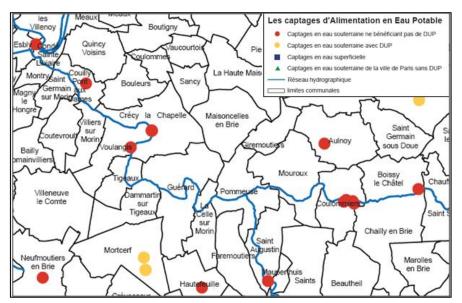


Figure 99 : Carte des Captages eau potable sur la zone d'étude (source : DDASS)

Sur le territoire, on note une augmentation des prélèvements en eau potable dans les nappes du tertiaire d'environ 30% entre 1995 et 2007 qui correspond à l'augmentation de la population.

Seuls, les captages de Condé-Ste-Libiaire (SIAEP Marne et Morin) et l'ensemble des captages de Coulommiers puisent plus de 500 000 ³/an.

On remarque que le volume prélevé en période d'étiage est supérieur à 1/3 du volume annuel, mettant en évidence des prélèvements plus importants en période estivale.

Tableau 84 : Prélèvements AEP sur le territoire de 1995 à 2007 (source : SAGE)

Dpt			1995	1996	1997	1998	1999	2000	2001	2003	2004	2005	2006	2007
77	Coulommiers	Volume annuel	1264354	1235343	1373633	1347009	1366826	1410543	1541933	1396355	1229035	1347784	1359676	1174968
11	Couloillillers	Volume étiage	518612	439509	540704	569236	561661	588301	606930	596565	494594	722328	554198	492519
77	Quincy Voisins	Volume annuel	234952	224352	81519									
11	Quincy voisins	Volume étiage	100345	93211	26460									
77	Vaulanais	Volume annuel	82751	81266	70217	71380	74294	81991	88576	65937	34009	0	0	
//	Voulangis	Volume étiage	37135	35509	31002	33221	32360	35203	35908	33105	13727	0	0	
77	SIAEP Boissy le	Volume annuel	317458	294330	282613	282219	278879	270989	286851	360770	359722	381241	429886	447853
//	Chatel Chauffry	Volume étiage	133744	116621	116769	111777	114940	110376	124143	143546	148113	152354	189293	187730
77	SIAEP Marne et	Volume annuel	906564	806244	909297	1284569	1353367	1486455	1413812	1448502	1220418	1323399	1437981	1408667
	Morin	Volume étiage	378367	337959	383501	564176	580592	602297	596037	618984	464476	609784	622033	590481

VIII.3.1.2. Secteur industriel

Les prélèvements industriels se font en eaux superficielles à 78% et en eaux souterraines (nappe du tertiaire) à 22%. Dans les deux cas, le plus gros préleveur est la papeterie Arjo Wiggins, devenue Cascade Ste Marie en 2000, aujourd'hui en cessation d'activité.

Tableau 85 : Prélèvements industriels sur la zone d'étude de 1995 à 2007 (source : SAGE)

	Dpt	Communes	Préleveur		1995	1996	1997	1998	1999	2000	2001	2003	2004	2005	2006	2007
US 60	77	Boissy le	Arjo Wiggins	Volume annuel	1792858	1 606 561	1459025	1234786	1198988	0	0	0	0	0	0	0
rficie lles	//	Châtel	Arjo wiggins	Surface irriguée	767170	648181	654324	482258	578589	0	0	0	0	0	0	0
Ä	77	Boissy le	Cascade Ste	Volume annuel	0	0	0	0	0	1 006 807	824 272	570 427	437 336	367 854	285 704	0
3	//	Châtel	Marie	Surface irriguée	0	0	0	0	0	385 907	357 786	246 379	221 804	129 946	145 274	0
×	77	Crécy la	Loople Lodge	Volume annuel	0	0	0	37500	37500	0	10 052	10 052	6 640	0	0	0
Z	//	Chapelle	Leon's Lodge	Surface irriguée	0	0	0	37500	15719	0	4213	4213	5693	0	0	0
ē	77	Boissy le	Ario Wiggins	Volume annuel	361792	375209	335607	336213	306289	0	0	0	0	0	0	0
ië	//	Châtel	Arjo Wiggins	Surface irriguée	128872	140452	112891	148830	100035	0	0	0	0	0	0	0
-F	77	Boissy le	Cascade Ste	Volume annuel	0	0	0	0	0	454380	138153	98092	13076	17609	23296	0
np a	//	Châtel	Marie	Surface irriguée	0	0	0	0	0	191518	35789	16083	7551	8765	7324	0
abbe	77	Dammausa	Pechiney	Volume annuel	0	126924	58 186	123 226	84 203	83 166	71 771	0	0	0	0	0
Ž	77	Pommeuse	Bâtiment	Surface irriguée	0	67165	4872	60320	30677	22163	20880	0	0	0	0	0

Les prélèvements en eaux superficielles sont en forte diminution depuis 1995, ce qui s'explique par :

- la diminution de la consommation d'eau des entreprises ;
- la cessation d'activité de la papeterie.

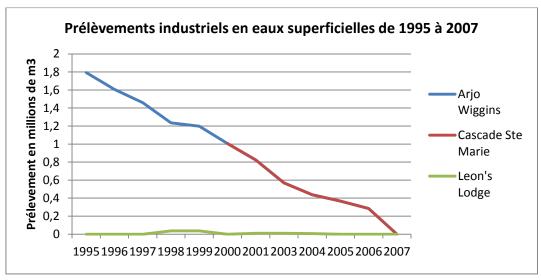


Figure 100 : Prélèvements industriels en eaux superficielles de 1995 à 2007

Pour ce qui est des eaux souterraines, les prélèvements sont relativement constants pour Pechiney Bâtiment. Pour la papeterie, les prélèvements chutent à partir de 2001, sans doute pour cause de cessation d'activité.

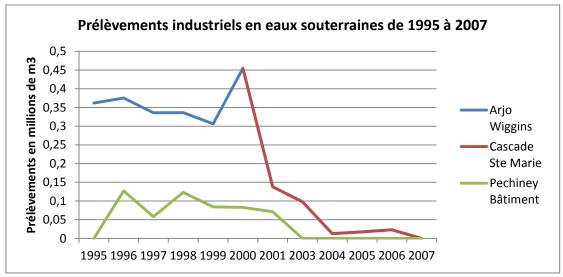


Figure 101 : Prélèvements industriels en eaux souterraines de 1995 à 2007

VIII.3.1.3. Agriculture

Les prélèvements d'eau liés à l'agriculture se font majoritairement en eaux souterraines, principalement sur la commune de Chailly-en-Brie. Cette commune représente à elle seule 1/5 de la SAU des 17 communes de la zone d'étude et présente donc des besoins forts en irrigation.

Tableau 86 : Prélèvements liés à l'agriculture sur la zone d'étude de 1995 à 2007 (source : SAGE)

	Dpt	Communes		1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
es	77	Couilly Pont	Volume annuel		3 750											
Eaux erficielles	//	aux Dames	Surface irriguée		5											
Ea	77	Guérard	Volume annuel					1820	3 900	1 210	2 329	4 100	2 507	5 105	3 117	1 010
dns	//	Gueraru	Surface irriguée					2	3	3	3	3	3	3	3	3
	77	Boissy le	Volume annuel					1456		1050	1365	924	924	924	924	1127
ē	//	Châtel	Surface irriguée					1,6		0,4	0,4	0,4	0,4	0,4	0,4	0,4
Tertiaire	77	Boissy le	Volume annuel							1075		1122	1122	1122	1122	816
	//	Châtel	Surface irriguée							0,4	0,5	0,5	0,5	0,5	0,5	0,5
np a	77	Chailly en	Volume annuel			89 180	109 200	116 000	75 000	65 000	60 000	71 500	58 500	92 370	78 350	17 370
Nappe	//	Brie	Surface irriguée			98	120	102	102	81	133	185	79	105	67,7	44
ž	77	Quincy	Volume annuel	15 750	18 000											
	//	voisins	Surface irriguée	21	24											

Concernant les prélèvements souterrains, la tendance globale est à la baisse, excepté en 2003 et 2005. Ces variations peuvent être corrélées aux variations de la surface irriguée.

Les prélèvements en eaux de surface sont très peu nombreux sur la zone d'étude. On n'observe pas de tendance générale sur la période 2000-2007, d'autant que la surface irriguée reste constante. Toutefois, l'année 2001, particulièrement pluvieuses, sont marquées par une brusque diminution des quantités d'eau prélevées.

Lors des campagnes de terrain, 9 prélèvements directs ont pu être observés.

VIII.3.2. Assainissement

VIII.3.2.1. Assainissement non collectif

Gestion

Sur la zone d'étude, cinq intercommunalités possèdent la compétence « assainissement non collectif » :

- 3 syndicats d'assainissement : SIA Coutevroult, Crécy-la-Chapelle, Voulangis, Villiers-sur-Morin, SIA la Celle sur Morin, Faremoutiers, Pommeuse et SIA du Nord-Est Seine et Marne ;
- 1 Syndicat mixte : le Syndicat mixte de la région de Boutigny ;
- 1 communauté de communes : la Communauté de communes de la Brie des Moulins.

Répartition

Les communes en assainissement autonome total, c'est-à-dire dont les habitants assurent eux-mêmes le traitement de leurs eaux usées, sont majoritairement localisées dans la moitié est du territoire, où l'habitat est plus dispersé.

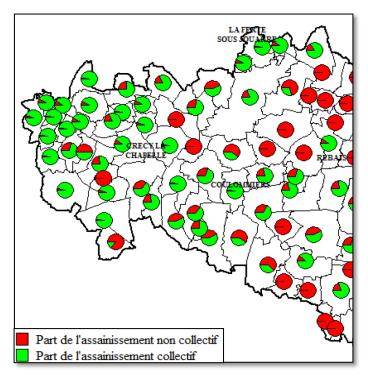


Figure 102 : Part de l'assainissement collectif et non collectif par commune en 2008 (source : SAGE)

Le SPANC

La loi sur l'eau de 1992 prévoit la mise en place d'un SPANC par les communes avant fin 2005. Ce service a pour rôle de vérifier la conformité et le bon fonctionnement des installations d'assainissement autonome, sur l'ensemble des logements de la commune.

Sur le territoire d'étude, la majorité des communes sont couvertes par un SPANC, le reste étant en cours de procédure.

A noter que le Syndicat de Coutevroult, Crécy-la-Chapelle, Voulangis, Villiers-sur-Morin dispose de la compétence « entretien et réhabilitation des systèmes d'assainissement non collectif ».

VIII.3.2.2. Assainissement collectif

Zones sensibles

Afin de protéger les eaux de surface de l'eutrophisation, l'arrêté ministériel du 23 novembre 1994 délimite un certain nombre de bassins versants en zones sensibles. Ce classement implique des normes plus strictes sur les rejets des stations d'épuration sur les paramètres phosphore et azote, voire bactériologiques. La totalité du territoire d'étude est en zone sensible.

Gestion

Sur la zone d'étude, on compte sept structures intercommunales ayant la compétence « assainissement collectif »:

- 5 syndicats d'assainissement : SIA Quincy-Voisins, Mareuil-les-Meaux, Condé Ste Libiaire, SIA de Couilly Pont aux Dames, St Germain sur Morin, SIA Coutevroult, Crécy-la-Chapelle, Voulangis, Villiers-sur-Morin, SIA la Celle sur Morin, Faremoutiers, Pommeuse, SIA du Nord Est Seine-et-Marne;
- 1 Syndicat mixte : le Syndicat mixte de la région de Boutigny ;
- 1 communauté de communes : la Communauté de communes de la Brie des Moulins.

Fonctionnement

Notre zone d'étude comporte 17 systèmes d'épuration collectifs ou semi-collectifs, dont 2 rejettent leurs effluents en dehors du bassin versant du Grand Morin (en rose dans le tableau).

Tableau 87 : Caractéristiques des stations d'épuration (source : SAGE)

			<u>ouu </u>									•						
Département	Localisation de la STEP	Maitre d'ouvrage	Gestionnaire	Capacité station (EH)	Communes raccordées à la station	Nb habitants raccordés	Capacité de pollution (kgDBO5/j)	Capacité hydraulique (m3/j)	Arreté prefectoral eaux	Année de mise en service	Type de traitement	Traitement des boues issues d'ANC	Autosurveillance	Cours eau récepteur	Nombre industries raccordées	Traitement des boues	Longueur du réseau (en m)	Type du réseau
77	Boissy Le Chatel	Commune	SIANE	800	Boissy le Chatel	2043	48	160	non	1967	Boues activées à aération prolongée		non	Grand Morin			17400	mixte
77	Bouleurs	Commune	Véolia eau	1000	Bouleurs	1020	60	150	non	1983	Boues activées à aération prolongée		oui	ru du Mesnil,			7150	séparatif
77	Boutigny	Syndicat mixte de Boutigny	Lyonnaise des eaux	1700	Boutigny, St Fiacre	863	102	340	non	1992	Boues activées à aération prolongée	non	oui	ru des cygnes, (BVMarne)	0		10200	mixte
77	Chailly en Brie	Commune	Veolia	1500	Chailly en brie	914	90	300	oui	1998	Boues activées à aération prolongée		non	Grand Morin			7827	mixte
77	Condé Ste Libiaire (Camping)	Francilienne de maintenance	Francilienne de maintenance	120 ou 1200	camping caravaning club	160	60	120	non		Boues activées à aération prolongée		non	Grand Morin			2200	séparatif
77	Couilly Pont aux Dames	SA de Couilly Pont aux dames St Germain sur Morin	Véolia eau	1500 0	Couilly Pont aux Dames, Coutevroult, Crécy la Chapelle, St Germain sur Morin, Villiers sur Morin, Voulangis	1002	900	3000	non	1980	Boues activées à aération prolongée		oui	Grand Morin		oui	66265	mixte
77	Coulommes	Commune	Véolia eau	530	Coulommes	385	29	80	non	1972	Boues activées à aération prolongée		oui	ru du Mesnil,			3290	séparatif
77	Coulommiers	Commune	Véolia eau	2500 0	Coulommiers	1299 4	1500	5000	oui	1964	Boues activées - Moyenne charge		oui	Grand Morin			56279	séparatif
77	Dammartin sur Tigeaux	Commune	Véolia eau	1000	Dammartin sur tigeaux	785	60	150	oui	1981	Boues activées à aération prolongée		non	ru du Binel,			4500	séparatif
77	Esbly	Commune	Véolia eau	5750	Esbly, Isles les Villenoy	5273	345	950	oui	1980	Boues activées à aération prolongée		oui	Grand Morin			29272	séparatif
77	Guérard	Commune	Véolia eau	2000	Guérard	1256	60 ou 120	216	non	1991	Boues activées à aération prolongée			Grand Morin			11946	séparatif
77	Montry	Commune	SAUR	6100	Montry	2600	367	1270	oui	2002	Boues activées à aération prolongée		oui	Grand Morin			14720	mixte
77	Mouroux	Commune	Lyonnaise des eaux	1500	Morcerf	2517	90	non	non	1971	Boues activées à aération prolongée	non	oui	Grand Morin	0	oui	17912	mixte
77	Pommeuse	SIA de la Celle sur Morin Faremoutiers Pommeuse	Lyonnaise des eaux	8500	La Celle sur Morin, Faremoutiers, Pommeuse	3791	514	2200	oui	2004	Boues activées à aération prolongée		oui	Grand Morin			34400	mixte
77	Quincy Voisin	SIA Mareuil les Meaux, Condé Ste Libiaire, Quincy Voisins,	SAUR	8000	Mareuil les Meaux, Condé Ste Libiaire, QuincyVoisins	6475	432	1500	non	1983	Lagunage aéré	non	oui	fossé, (BV Marne)	0	non	30100	mixte
77	Sancy Les Meaux	Commune	Commune	500	Sancy les Meaux	130	30	75	oui	2005	sable plantés de roseaux		non	ru de Vaudessart			2495	séparatif
77	Vaucourtois	SIVOM de Boutigny	Lyonnaise des Eaux	200	Vaucourtois	192	12	30	non	1981	Lagunage aéré	non	non	ru du Mesnil	0		1577	séparatif

Parmi les stations d'épuration, seules 2 ont une capacité de traitement supérieure à 10 000 EH (Coulommiers et Couilly-Pont-aux-Dames), 5 ont une capacité comprise entre 2000 et 10 000 E.H. et 10 ont une capacité inférieure à 2000 E.H..

Le traitement le plus présent sur le territoire est le traitement par boues activées à aération prolongée. Ce procédé d'épuration, utilisé par toutes les STEP dont la capacité dépasse 600 E.H., présente un fort rendement d'épuration pour les matières en suspension, l'azote, la DCO et la DBO5. D'autres types de traitements sont utilisés : lagunange aéré (2 stations) et filtre à sable planté de roseaux (1 station).

Diagnostic

La Mission Interservices de l'Eau de Seine-et-Marne a mis au point une méthode permettant d'évaluer les performances des systèmes d'assainissement.

Le dernier bilan montre que 71% des stations d'épuration de notre territoire fonctionnent correctement. Les dysfonctionnements relevés sont principalement dus à une surcharge du réseau hydraulique par temps de pluie.

VIII.3.2.3. Réseau d'assainissement

Selon la Mission Interservices de l'Eau de Seine-et-Marne, l'état de fonctionnement d'un réseau peut être caractérisé par deux paramètres : le taux de collecte et la présence ou non d'eaux claires parasites et météoritiques (tableau).

Eaux claires parasites et météoritiquesabsenceprésenceabsenceprésenceTaux de collecte> 85%< 85%</td>< 85%</td>Fonctionnementcorrectmoyenmauvaistrès mauvais

Tableau 88 : Définition de l'état des réseaux d'assainissement

Au niveau des communes de l'étude, 23% du réseau fonctionne correctement. La majorité des réseaux présentent des anomalies de fonctionnement qui peuvent aller jusqu'à perturber les stations d'épuration (source : SAGE).

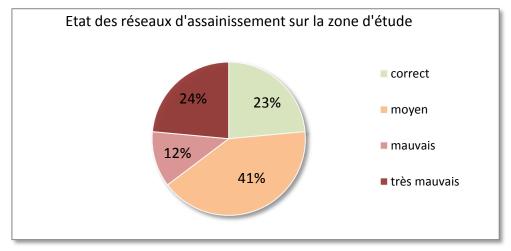


Figure 103 : Etat des réseaux d'assainissement en Seine-et-Marne

VIII.3.3. Rejets

VIII.3.3.1. Rejets industriels

Sur le territoire du Grand Morin, l'analyse des effluents bruts et des effluents rejetés montre que la très grande majorité des entreprises non raccordées sur le réseau domestique effectuent un traitement avant rejet au milieu naturel. Le rendement épuratoire des effluents est présenté sur les tableaux suivants :

<u>Tableau 89 : Rendement épuratoire des effluents industriels avant rejet dans le milieu naturel ou le réseau communal par bassin versant en 2005 (source : AESN)</u>

		MES			MP			NO			AOX	
	Effluent brut kg/j	Effluent rejeté kg/j	Rendement épuratoire en %									
Grand Morin	8613	878	90	16	9	44	68	68	0	24,44	17,06	30
Petit Morin	2654	187	93	2	2	0	0	0	0	1,773	0,133	92
Total	11267	1065	91	18	11	39	68	68	0	26,213	17,193	34

		MTX			NR			MI			МО	
	Effluent brut kg/j	Effluent rejeté kg/j	Rendement épuratoire en %									
Grand Morin	35,537	19,399	45	224	75	67	142,36	19,796	86	1829	709	61
Petit Morin	0,332	0,288	13	426	57	87	0,994	0,172	83	7006	897	87
Total	35,869	19,687	45	650	132	80	143,354	19,968	86	8835	1606	82

D'après les données 2005 du fichier de redevance d'Agence de l'Eau, les composés que l'on retrouve en plus grande quantité dans les effluents sont les matières organiques (54%) et les matières en suspension (36%). On retrouve également les matières phosphorées (0.4%), des matières inhibitrices (0,7%), de l'azote réduit (4,5%), de l'azote oxydé (2.3%) et des métaux (0.7%).

D'après le registre des émissions polluantes, aucune des ICPE citées précédemment dans ce rapport n'effectue de rejets directs dans le milieu naturel.

VIII.3.3.2. Rejets observés

Sur l'intégralité du linéaire, 131 rejets directs ont pu être observés. La majorité de ces rejets se situent à Coulommiers ou au niveau des agglomérations.

VIII.4. PATRIMOINE BATI ET ARCHITECTURAL

VIII.4.1. Patrimoine lié à l'eau

VIII.4.1.1. Histoire des Moulins

L'eau et le vent ont été pendant longtemps les seuls moteurs naturels utilisés par l'homme. Le vent a été utilisé en premier : une multitude de moulins ont été construits dans les plaines et sur les sommets les plus élevés. Ils ont ensuite été remplacés en grande partie par des moulins à eau. Les moulins ont subi de nombreuses évolutions à travers les siècles (tableau ci-dessous).

Tableau 90 : Histoire de l'établissement des moulins

Date	Evér	nements majeurs
Premiers âges historiques	Construction de moulins à vent	
ΙΧ ^è	Remplacement par des moulins à eau	Temps des Carolingiens
IX ^è - XII ^è	Multiplication	Au niveau du Grand Morin, établissement de barrages pour créer des chutes à proximité des villages pour construire des moulins à blé
XII ^è	Augmentation de la productivité	Augmentation de la productivité et disparition d'un certain nombre de moulins
Fin du XIV ^è	Abandon	Guerre de Cent-Ans : les moulins tombent en ruines
ΧVè	Diversification	Conversion de certains moulins à blé en moulins à tan, à écorce, à draps, à huile, à papier
XVI ^è au XIX ^è	Stagnation	En 1809, on compte encore 548 moulins dans le département, dont 467 à eau et 81 à vent
XIX ^è	Disparition totale des moulins à vent	
ХХ ^è	Diversification	Transformation en papeteries, polisseries, mégisseries.

L'histoire des moulins a été marquée par la guerre de Cent-Ans, causant souvent leur destruction, puis par la révolution française au cours de laquelle ils ont été « confisqués » pour être revendus « au profit de la nation ».

Le tableau suivant récapitule l'histoire des moulins présents sur la zone d'étude.

Tableau 91 : Histoire des différents moulins de l'aval du Grand Morin (source : Bazin 1901)

Intitulé	Date de construction	Etapes importantes	Productivité	
Moulin d'Esbly	1530	Réparations au déversoir en 1857 ; remplacement des 3 paires de meules par 3 cylindres après 1867		
Moulin de Liarry / Montry	Transformation en scierie vers 1867		-	
Moulin de 1209 Quintejoie		Confisqué à la révolution. Meules de pierres remplacées par 7 paires de cylindres		
Moulin de Saint-Germain		Vendu au profit de la nation en 1792. Vendu à l'état en 1846 pour les besoins du canal de Chalifert		
Moulin Talmé	avant 1226	Moulin à blé transformé en moulin à huile en 1228. Confisqué à la révolution. Vendu à l'état en 1845 pour les besoins du canal de Chalifert		
Moulin Pont- aux-Dames avant 1220		Confisqué à la révolution		
Moulin de la Misère		Transformé successivement en chamoiserie, fabrique d'outils de menuisiers puis scierie		
Moulin de la Sault	avant 1237	Ruiné pendant la guerre de Cent-Ans. Transformé en moulin à tan puis en moulin à blé. Aujourd'hui plus en fonction	16 000 quintaux de blé/an	
Moulin avant 1237		De moulin à blé, devient moulin à draps après la guerre de Cent-Ans, puis moulin à huile au XVIIè. Transformé en chamoiserie		
Moulin Gille	avant 1574 puis 1780	Tombé en ruines pendant une centaine d'années, puis reconstruit en 1780, puis démoli à nouveau avant 1792	-	
Moulin Guillaume	XVIè	Moulin à draps devenu à huile en 1650 puis à blé, puis à tan et à huile en 1697, puis à fer		
Moulin Nicol	Nicol 1802 Tombé en ruines pendant la guerre de Cent-Ans		12 000 hL de blé/an	
Moulin Brûlé	rûlé XIIè Moulin à blé devenu à tan au XVIIè. Confisqué à la révolution. Mis en chômage en 1848		6000 hL de blé/an	
Vannage moyen bras de XVIIè Crécy		D'abord petit brasset détourné du Morin, devient un moulin à blé en 1830, supprimé vers 1860		
Vannage petit bras de Crécy	1219	1219 Jusqu'à la révolution, c'est l'un des 5 moulins banaux du domaine de Crécy		
Moulin de Voulangis ou de St Martin	XVIè	Moulin à blé devenu à tan au XVIIè puis à blé au XVIIIè		
Moulin de la Chapelle-sur- Crécy	Détruit pendant la guerre de Cent-Ans. Reconstruit au XVè. Devenu moulin à drap en		14 000 hL de blé/an	
Moulin de Serbonne	Tour à tour moulin à blé, à huile, à drap ou à tan ; tombé en ruines en 1499		6 000 hL de blé/an	
Moulin de Tigeaux ou de Rézy		Jusqu'à la révolution, c'est l'un des 5 moulins banaux du domaine de Crécy. Reconstruit en 1850 avec 7 paires de meules, remplacées ensuite par 4 cylindres en acier		
Moulin de XIIè		Tour à tour moulin à blé, à drap ou à tan. Confisqué à la révolution	1	
Moulin de Prémol	1221	Jusqu'à la révolution, c'est l'un des 5 moulins banaux du domaine de Crécy	-	
Moulin de Genevray	1775	Détruit le 20 messidor an VI	-	
Moulin de Bicheret	n de Anciennement papeterie, devenu moulin à drap en 1559 puis à huile un siècle plus		-	
Moulin de Guérard	Confisqué à la révolution, vendu comme bien national		22 000 hL de blé/an	
Moulin de Sainte-Anne	, and the second		4 500 quintaux de blé/an	
Moulin de la Celle sur Morin	XIVè	Confisqué à la révolution	28 000 quintaux de blé/an	
Moulin de Bertrand		Moulin à huile disparu en 1787	-	
Moulin de Courtalin	l XVè l			

Moulin de Tresmes / la Billebauderie	XIIè	Confisqué avec ses dépendances au début de la révolution		
Moulin de Pommeuse	XIVè	Améliorations importantes dans les années 1900		
Moulin de Mouroux	Tombé en ruines nendant la guerre de Cent-Ans		20 quintaux de farine/ j	
Moulins de Coubertin et de Carré	pubertin et de 1602 industriel parisien et transformés en une manufacture d'acier poli et de produits		-	
Moulin Neuf	1530	Emporté par les grandes eaux en 1640 et reconstruit. Tombé de nouveau en ruines, rétabli au XVIIIè. Transformé en fabrique d'acier poli		
Moulin de Triangle	1292 Tombé en ruines au XVè puis reconstruit			
Moulin Trochard	XVè Moulin à huile converti en moulin à blé en 1776. Confisqué à la révolution puis converti en moulin à tan à cloche		-	
Moulin des Prés		Existence de plusieurs moulins à cet endroit : un à blé et deux autres à tan	-	
Moulin de Grotteau ;	XIIIè	Au XIXè, ajout de 2 cylindres et un granulateur		
Moulin des Religieuses	XIè	Vendu en 1889 à la ville de Coulommiers qui le fit démolir afin de facilité l'assainissement du brasset des religieuses	-	
Moulin de l'Arche	Moulin de XVIè Saisi à la révolution et vendu comme hien national		25 000 hL de blé/an	
Moulin de Pontmoulin	15/0 15/0 11/		-	
Moulins de Sainte-Marie	e-Marie 1830. Aujourd'hui, papeterie connue dans le monde entier lin de la XIVè A l'origine, deux moulins dont l'un deux était en ruines en 1329. Transformé en		-	
Moulin de la Bretonnière			-	

Aujourd'hui, de nombreux moulins ont disparu. D'autres ont été regroupés :

- moulins Pont-aux-Dames et moulin de la Misère :
- moulin de Sainte-Anne, moulin de la Celle-sur-Morin et moulin Bertrand ;
- moulin neuf, moulin de Triangle et moulin Trochard ;
- moulin de Grotteau et moulin des religieuses.

Au niveau du Grand Morin aval, Bazin dénombrait 43 moulins en 1901. On en compte aujourd'hui 19. Certains ont été rachetés par des particuliers et constituent des habitations privées, d'autres ont été réaménagés en chambres d'hôtes ou en lieux de réception (moulins de Tigeaux, Pommeuse et Saint-Martin). Dans tous les cas, ils constituent un patrimoine architectural non négligeable.

VIII.4.1.2. Stabilité du patrimoine

Certains édifices sont fondés sur pieux bois. La mise hors d'eau de la partie supérieure des fondations en bois favorise le développement de champignons et conduit à une altération rapide. Cette altération est d'autant plus rapide que les zones dégarnies sont désormais soumises à l'alternance de situations sèches et humides. Sur le secteur, aucune des deux grandes agglomérations (Coulommiers et Crécy-la-Chapelle) ne présentent ce type de fondations. Seuls les moulins de Prémol, de Tigeaux, de la Sault et Drevault (moulin Guillaume?) comportent un risque en terme de stabilité au vu des fondations en pieux bois qu'ils possèdent. Le cas du moulin de la Sault et du moulin Drevault est un exemple probant de cette instabilité. En effet, les fondations se sont déjà tassées car les ouvrages ne permettent plus de maintenir un niveau d'eau suffisant.

VIII.4.1.3. Lavoirs, fontaines et puits

La quasi-totalité des communes de la zone d'étude possèdent des lavoirs, fontaines ou puits. Ces ouvrages témoignent des anciennes activités qui ont façonné les vallées.

Les lavoirs, autrefois lieux de lessive, jalonnent les cours d'eau, s'adaptant aux sites concernés. Ils sont la plupart du temps fermés sur trois côtés. Plusieurs chemins de randonnée permettent de prendre connaissance de ce patrimoine. De nombreux puits sont visibles sur les places des villages dans les cours privés ou le long des chemins reliant les villages (source : SAGE).

VIII.4.2. Monuments historiques

Par opposition au patrimoine « naturel », le patrimoine bâti se compose des différents bâtiments, constructions et infrastructures liés à l'activité humaine, dont la nature architecturale ou symbolique est un héritage du passé. Ce patrimoine représente un témoignage historique et culturel.

L'interrogation de la base de données Mérimée du Ministère de la Culture permet de dresser la liste du patrimoine architectural de la zone d'étude. Deux catégories sont habituellement présentées : les monuments historiques (MH), imposant des contraintes réglementaires, et les bâtiments recensés dans le cadre de l'inventaire général du patrimoine culturel.

Classement	Titre	Siècle	Commune			
MH	Eglise		Chailly-en-Brie			
MH ; label XX ^è	Théâtre municipal de Coulommiers	XX ^è	Coulommiers			
MH	Ancienne prison	XIX ^è	Coulommiers			
МН	Ferme de l'hôpital, ancienne Commanderie des Templiers	XIII ^è	Coulommiers			
MH	Ancien couvent des Capucins	XVIIè	Coulommiers			
MH	Obélisque de Villeneuve-le-Comte	XVIII ^è	Dammartin-sur-Tigeaux			
MH	Hôtel Grand-Jean de Lumière	XVIIIè	Crécy-la-Chapelle			
MH	Eglise Notre-Dame de La Chapelle-sur-Crécy	XIII ^è	Crécy-la-Chapelle			
MH	Eglise Saint-Georges		Couilly Pont-aux-Dames			
MH ; label XX ^è	Pont sur la Marne	XX ^è	Esbly			
MH	Eglise	XII ^è	Faremoutiers			
MH	Château de Bélou	XVII ^è	Boutigny			
MH	Pigeonnier de la Ferme	XVIII ^è	Coulommes			

Tableau 92 : Monuments historiques sur la zone d'étude

Château de Bélou

Eglise de Crécy-la-Chapelle

Depuis la loi de 1943, les monuments historiques sont entourés d'un périmètre de protection de 500m. Cette loi impose une « vigilance à l'égard des projets de travaux dans le champ de visibilité des monuments historiques ». La co-visibilité signifie soit que la construction est visible du monument, soit que les deux édifices sont visibles conjointement depuis un certain point de vue.

Toute construction, restauration, destruction projetée dans ce champ de visibilité doit donc obtenir l'accord préalable de l'architecte des bâtiments de France [ABF] ou d'un avis simple s'il n'y a pas de co-visibilité.

VIII.5. TOURISME ET LOISIRS

VIII.5.1. Intérêt touristique

Notre zone d'étude ne constitue pas un haut lieu touristique, comme en témoignent le faible nombre d'hébergements sur l'ensemble des communes (2 campings et 6 hôtels) et la faible variation de population en période estivale.

Cependant, le territoire possède quelques richesses patrimoniales, résumées sur cette carte de Seine-et-Marne Tourisme :

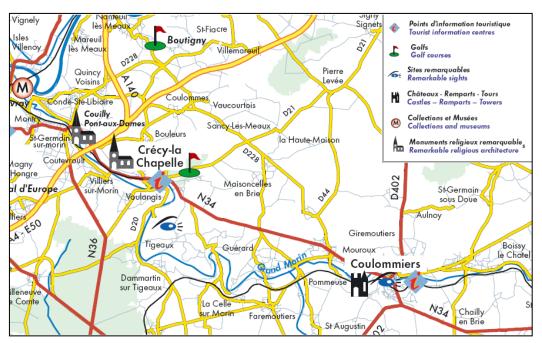


Figure 104: Tourisme sur la zone d'étude

La structure Seine-et-Marne Tourisme propose le descriptif suivant des richesses patrimoniales des communes de la zone d'étude :

• Coulommiers: Coulommiers conserve un cadre et un charme authentiques où les pierres font partager les souvenirs du passé. Au cœur du parc des Capucins, les vestiges du château de la Duchesse de Longueville rappellent un passé prestigieux. La Chapelle des Capucins abrite le musée municipal et une remarquable grotte de coquillages à l'emplacement du chœur. Sur les hauteurs de la ville, la Commanderie des Templiers du XIIe siècle, l'une des mieux conservées d'Ile-de-France, replonge les visiteurs dans l'histoire des « Moines Soldats ».

Chapelle des Capucins

- Musée des Capucins: Pour évoquer l'histoire de la cité briarde, une visite dans ce musée s'impose. Il présente des collections passionnantes qui permettent de retrouver le passé de la ville. L'ancien château de la Duchesse de Longueville aujourd'hui disparu est présent à travers des objets. D'autres souvenirs historiques comme des bijoux, le trésor de Paley ou globes terrestres et célestes sont présentés avec soin.
- Crécy-la-Chapelle : Surnommée la «Venise de la Brie», Crécy-la-Chapelle a gardé son caractère propre hérité du Moyen Age : rues principales concentriques, fossés défensifs renforcés de murailles et de tours dont il reste de nombreux vestiges. Au gré des canaux, les maisons des tanneurs se succèdent et l'on découvre une belle église paroissiale. Le hameau de La Chapelle a conservé sa collégiale Notre Dame de l'Assomption élevée vers 1250 dans les terres basses de la vallée. Son clocher en double bâtière est typique de la Brie. Des fragments de bas-reliefs ont été retrouvés dans la nef et placés au tympan du portail principal.

VIII.5.2. Cheminements et circuits touristiques

VIII.5.2.1. Circuits pédestres

Pour ce qui est de la randonnée, la zone d'étude est traversée par le GR1, qui passe à Crécy-la-Chapelle.

D'autre part, Seine-et-Marne Tourisme propose les circuits suivants :

- Circuit en boucle autour du Grand Morin, au Sud de Meaux, avec départ et arrivée à la gare de Crécy-la-Chapelle. Le chemin longe des petits canaux ou brassets du Grand Morin. La Chapelle-sur-Crécy mérite un détour pour voir l'un des plus beaux exemples d'églises gothiques en Ile-de-France.
- Randonnée pédestre accompagné(e) d'un âne pour porter les bagages et les enfants dans un site protégé, à la découverte de la faune, la flore et de ses paysages.
- Un circuit piétonnier est également proposé afin de découvrir «La vallée des Peintres du Grand Morin» entre Crécy, Villiers-sur-Morin et Saint-Germain-sur-Morin. Ce circuit traverse des paysages façonnés par l'eau qui ont inspiré de nombreux artistes, tels Corot, Toulouse-Lautrec ou Servin.

VIII.5.2.2. Circuits VTT

Seine-et-Marne Tourisme propose deux circuits VTT sur notre zone d'étude :

Circuit « La vallée du grand Morin » par Coulommiers et La-Ferté-Gaucher

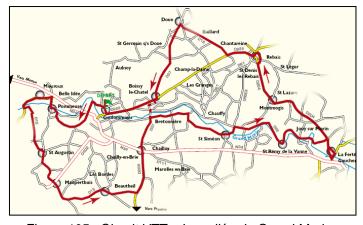


Figure 105 : Circuit VTT « La vallée du Grand Morin »

Circuit « Autour de Crécy-la-Chapelle »

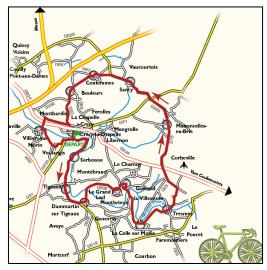


Figure 106 : Circuit VTT « Autour de Crécy »

VIII.5.3. Loisirs

VIII.5.3.1. Canoë-kayak

La pratique du canoë-kayak est relativement développée sur le Grand Morin aval, avec les clubs CK de Coulommiers et ses environs et celui de St-Germain-sur-Morin. Ces clubs proposent des activités de Freestyle, slalom, descente et compétition.

L'intégralité du linéaire concerné par l'étude est parcourue par les clubs et les autres pratiquants de canoë-kayak. Cependant, les tronçons les plus empruntés se situent de Coulommiers à Guérard et de Dammartin-sur-Tigeaux à Crécy-la-Chapelle.

L'article L211-3 de la Loi n°2006-1772 du 30 décembre 2006 sur l'Eau et les Milieux Aquatiques (LEMA) fait état d'un décret conditionnant les conditions dans lesquelles le propriétaire ou l'exploitant d'un ouvrage, visé par l'article L214-2 ou soumis à la loi du 16 octobre 1919 (relative à l'utilisation de l'énergie hydraulique), met en place une signalisation adaptée pour assurer la sécurité de la circulation des engins nautiques non motorisés (III, 4°). Le décret N°2010-820 du 14 juillet 2010 définit ces conditions de signalisation.

De plus, les conditions dans lesquelles est établie et actualisée une liste des ouvrages pour lesquels est mis en place un aménagement adapté permettant leur franchissement ou leur contournement pour assurer la circulation sécurisée des engins nautiques non motorisés (article L211-3, III, 5°) sont décrites dans le décret N°2008-699 du 15 juillet 2008.

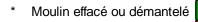

En 2010, le Comité Départemental de Canoë-Kayak de Seine-et-Marne a réalisé un état des lieux de la pratique de ce sport sur le Grand Morin, mettant en évidence certains problèmes. Cette expertise technique est le résultat de plusieurs descentes sur la rivière (entre 2004 et 2009). A noter tout particulièrement le manque de coordination entre les gestionnaires (propriétaires) d'ouvrages lors de la manipulation des vannes, entrainant parfois une baisse conséquente des niveaux d'eau à certains endroits et des tirants d'air insuffisants pour le passage des embarcations (vannes à moitié ouvertes). Il est à noter par ailleurs l'absence totale des dispositions de la LEMA, au regard des usages récréatifs de l'eau, et en particulier tout ce qui a trait à la libre circulation des engins nautiques non motorisés, dont le canoë-kayak. Les conclusions de ce document sont présentées dans le tableau ci-dessous.

Tableau 93 : Etat des lieux de la navigation sur le Grand Morin aval (source : Expertise technique, CDCK77)

N°	Nom de l'ouvrage	PK (km)	Etat des lieux	Intérêt
1	La Bretonnière*		- Ouvrage franchissable sans difficulté	-
2	Pont de Boissy-le-Châtel - D37	43,2	- Lavoir permettant un débarquement aisé	- Zone d'embarquement, de débarquement, de pique-nique en rive droite à 7,5 km de la base de St-Rémy-de-la-Vanne
3	Usine Boissy le Châtel	42,8	 Passage sur déversoir en rive gauche Approche délicate avec risque d'aspiration dans le petit bief en prolongement du déversoir sous passerelle et vanne Réception très délicate : coupure brusque du déversoir, hauteur de chute, mur en face du déversoir 100 m aval immédiat du barrage présentant des débris divers (éléments métalliques dans le cours d'eau) 	- Belle zone de courant serpentant à l'aval du barrage accessible en remontant la rivière depuis Coulommiers
4	Pontmoulin*	41,4	 - Bras droit débouchant sur les contreforts d'un ancien vannage, pont bas sous la route rapidement en charge en cas de montée des eaux et régulièrement encombré de branchages - Bras central, le plus large mais qui débouche sur les montants d'un ancien vannage qui menace de s'écrouler et qui est régulièrement encombré de branchages - Bras gauche débouchant sur un vannage en mauvais état puis sur un pont bas et l'entrée de la fausse rivière - Sur le bras principal à la sortie de Pontmoulin, le Morin est régulièrement barré sur les 2/3 de sa largeur par les services municipaux au niveau de la passerelle ce qui cré une marche difficile à franchir en remontant depuis Coulommiers 	- Entrée de Coulommiers et pointe du Parc des Capucins - Petit secteur de courant vif dans l'entrée de la fausse rivière, école d'eau vive suivant le niveau d'eau
5	Moulin de l'Arche		 Parking public accessible en rive gauche Parc paysager des Capucins représentant un intérêt majeur pour la pratique du CK (zone permettant des aménagements pour favoriser l'accès à l'eau des embarcations) Pas de signalétique pour la passe à canoë Entrée de la passe souvent fermée par un batardeau, impossibilité de débarquer pour la retirer, passe de ce fait inutilisable pour les pratiquants 	 Zone d'embarquement avec ponton en aval du barrage en rive droite Passe à canoë existante adaptée aux besoins de la pratique du CK
6	Moulin des Prés		 - Passe à canoë existante pas adaptée à la pratique du CK (dangerosité liée à la conception initiale de la passe : virage à la sortie trop marqué, étroiture des murets et fort encombrement d'embâcles à la sortie de la passe) - Forte vitesse de l'eau dans la passe liée à une pente trop marquée - Franchissement non sécurisé et pas adapté à tout public - Eaux stagnantes en amont avec encombrement de déchets flottants, souvent insalubres 	-
7	Moulin Trochard*	35,3	- Ouvrage franchissable sans difficulté	-
8	Moulin de Coubertin*	32,7	- Bras droit trop étroit pour une bonne pratique du CK, utilisation du bras gauche	-
9	Pont de Mouroux	31,1	 Débarquement possible en rive droite en aval du pont Débarquement possible en rive gauche en amont du pont avec accès sur la zone pique-nique sans habitation, et un parking 	Zone de pique-nique aménagéeCommerces à proximité
10	Clapet de Mouroux	31	 - Passe à canoë en rive gauche existante, entièrement masquée par la végétation, accès rendu difficile du fait de la présence d'un amoncellement important de végétaux, à l'amont, en rive gauche - Présence de racines et de souches d'arbres obstruant la circulation des embarcations dans la passe - Effondrement du muret droit de la passe sur la partie avale rendant la sortie difficile, voire dangereuse à cause des coincements potentiels - Barrage infranchissable sur les autres côtés, présence d'un rappel par niveau d'eau moyen, danger mortel non signalé pour les pratiquants par une signalétique adaptée et visible sur l'eau 	-
11	Barrage de Pommeuse*	29,1	 Effondrement d'un ancien déversoir Aménagement artisanal d'une digue avec une brèche permettant la circulation des embarcations avec deux gros blocs en plein milieu de la trajectoire : risque de coincement potentiel 	- Zone de halte gastronomique et d'hébergement possible
12	La Billebauderie*	27,6	- Ouvrage franchissable sans difficulté	-
13	Moulin Sainte-Anne	25	 2 bras de navigation pouvant être utilisés et un bras central condamné par des IPN soutenant la route : Bras gauche : - franchissement au travers des murs de soutien de l'ancien vannage du moulin présence d'une crémaillère pendante au dessus de l'eau, à hauteur d'homme, sur le centre du vannage → risque important de chocs zone avec un courant d'attrait qui peut engendrer le coincement des embarcations sur les piles du vannage pour un public non initié Bras droit : - Présence d'un vannage avec des vannes guillotines Pas d'assurance de leur ouverture au quotidien (ou du moins d'une) permettant le passage des embarcations Parfois un vannage central ouvert, avec un tirant d'air insuffisant pour un passage en toute sécurité 	-
14	Moulin Guérard*	22,5	 2 bras de navigation pouvant être utilisés : Bras gauche : facilité de circulation des embarcations, moyennant un léger entretien du lit de la rivière, au niveau des piles de l'ancien vannage Bras droit : ancien vannage sans aucune utilité en présence, à l'aval présence de nombreux atterrissements et d'amoncellement de roches gênant la circulation des embarcations 	-
15	Moulin Bicheret*	21,8	- Ouvrage franchissable sans difficulté	-
16	Moulin de Génevray*	20,6	- Ouvrage franchissable sans difficulté	-

<i></i>				1	
			- Présence d'un grand déversoir parallèle à l'axe de la rivière que l'on franchit en tête sur son point le plus haut :		
			- Franchissement du déversoir obligatoire pour la circulation des embarcations car absence de point de débarquement ou de passe à		
850	Moulin de Prémol	18,3	canoë à proximité du moulin	<u>-</u>	
			- Absence d'aménagement pour le franchissement : - pas de signalétique prévue signalant l'endroit où passer		
		1 '	- pas d'échancrure dans le déversoir permettant de guider les embarcations		
			- plan incliné du déversoir terminé par une réception difficile (40 cm de hauteur)		
			- Vannage démantelé en trois parties et sans utilité apparente		
18	Moulin de Coude*	17	- Présence de structures en metal à hauteur d'embarcation	_	
.0			- Présence de vestiges des pelles et des systèmes de crémaillère au fond de l'eau dans l'axe de circulation des embarcations → risque de		
			coincement pour les personnes et les embarcations		
	Moulin de Tigeaux	15,5	- Niveau d'eau parfois trop bas pour permettre le franchissement du déversoir (totalement à sec)	- Parking public en rive gauche 500 m en	
19			- Pelle du vannage central presque totalement fermées, ne permettant pas le franchissement des embarcations	amont → embarquement et débarquement	
			- Forte aspiration : courant d'attrait très fort sur le vannage central → risque de coincement mortel	faciles	
	Moulin de Serbonne	12.2	- Niveau d'eau parfois trop bas pour permettre le franchissement du déversoir (totalement à sec)		
20			- Echancrure réalisée par le propriétaire du moulin sur le 1 ^{er} quart du déversoir → pas de signalétique de l'échancrure		
20		13,2	- Echancrure pas assez large présentant de nombreuses aspérités pouvant occasionner des blessures	-	
			- Présence sous le moulin d'un rappel lié aux fondations de l'ancienne roue et de ses vannages → pas de signalétique du danger		
			- Déversoir franchissable sur son ensemble		
	Moulin de la Chapelle		- Pas de signalétique existante, notamment pour la voie d'eau alimentant le moulin		
21		11	- Déversoir pouvant occasionner un phénomène de rappel par fortes eaux	-	
			- Possibilité, en cas de niveau d'eau élevé, de débarquer et de réembarquer en rive gauche		
			- Nombreux obstacles à l'écoulement sur les brassets de Crécy-la-Chapelle → choix du bras principal (gauche)		
	Barrage du Faubourg	9	- Niveau d'eau parfois trop bas pour permettre le franchissement du déversoir (totalement à sec)	- Présence du centre ville de Crécy-la-	
22			- Rappel formé par l'ouverture de la vanne principale pendant les crues → pelle pas assez relevée présentant un risque de coincement		
				Chapelle	
////-			- En aval du déversoir, présence de barres de soutien du petit rendant la circulation dangereuse		
	Moulin Jaune	7,8	- Présence d'un déversoir sur toute la largeur		
23			- Niveau d'eau parfois trop bas pour permettre le franchissement du déversoir (totalement à sec) → possibilité de franchissement de l'ouvrage en	-	
			débarquant à l'amont et réembarquant à l'aval du déversoir		
			- 2 systèmes de vannages en rive droite : vanne en biseau et vanne guillotine présentant un risque de coincement pour les pratiquants		
	Moulin Guillaume	6,4	- Bonne signalétique à l'abord du moulin		
24			- Vanne avec quelques coincements d'arbre		
			- Passage par le déversoir formant un petite rappel, faible lame d'eau à la réception		
			- Gros rappel formé par une autre vanne		
			- 2 bras amènent au moulin :		
			- bras gauche : - bras qui amène à un vannage dangereux et non franchissable		
	Moulin de la Sault	6	- bras droit : - bras qui amène à un vannage central et sur un déversoir en mauvais état sur la gauche existence de pieux à la		
25			réception du déversoir	-	
			- passage par le vannage central non fonctionnel impossible du fait d'un tirant d'air trop faible		
			- passage possible sur le déversoir si niveau d'eau suffisant → existence d'un risque de coincement lié au fort attrait du		
			courant créé par le vannage ouvert à moitié		
	Moulin de Misère*	1	- Passage par le bras de droite → présence de plaques de ferraille le long des berges	B	
26		5,4	- Nombreux déchets tels qu'une baignoire et des structures des anciens abattoirs	- Projet de réhabilitation avec réalisation	
		0, 1	- En cas de crue, possibilité de se faire coincer sous le bâtiment, avec les troncs d'arbres et autres déchets qui s'y accumulent → danger mortel	d'un bassin de slalom	
27	Moulin Talmé*	4,4	- Ouvrage franchissable sans difficulté (bras du milieu)	_	
1111	IVIOUIIII TAIIIIC	7,7		-	
	Moulin Quintejoie		- Bonne signalétique indiquant de prendre le bras de gauche		
28		3,8	- A l'étiage, pas beaucoup d'eau à la réception du passage du déversoir	-	
			- Formation d'une belle vague lorsque la vanne est ouverte → attention à la hauteur de la porte (cas de noyade d'un baigneur il y'a une dizaine		
		1	d'années)		
	Moulin Liarry*		- Passage complètement détruit avec plusieurs possibilités :		
29		2,5	- Passage de droite encombré avec un tronc d'arbre en travers	-	
			- Passage sans difficulté sur le bras de gauche		
30	Porte à bateaux	8,0	- Ouvrage récemment rénové, avec des barrages flottants sur le bras gauche	_	
	ruite a Dateaux	0,0	- Niveau d'eau parfois trop bas (étiage) pour permettre le franchissement du déversoir (totalement à sec)		
	Confluence Marne		- Présence fréquente de déchets qui s'accumulent au niveau du pont du canal et pouvant provoquer de gros	- Possibilité de rejoindre la Marne qui se	
-		0	risques de coincements	trouve juste derrière le pont du canal de	
			- Débarquement rendu difficile par l'absence d'escaliers et de pontons	Meaux-Chalifert	
丄			- Deparquement rendu difficile par l'absence d'escaliers et de pontons	Ivieaux-Chailtert	

Franchissable sans difficultés
Franchissement impossible

Franchissable avec prudence, débarquement et réembarquement facile Franchissement dangereux, débarquement et réembarquement difficile

VIII.5.3.2. Pêche

a. Organisation de l'activité

L'activité pêche est structurée par les fédérations départementales de pêche et de protection des milieux aquatiques. Celles-ci structurent les Associations Agréées pour la Pêche et la Protection des Milieux Aquatiques (AAPPMA).

En 2011, les AAPPMA de Seine-et-Marne sont entrées en réciprocités au sein de l'Entente Entente Halieutique du Grand Ouest (EHGO, 36 départements dont Paris, la Seine-Saint-Denis, les Hauts-de-Seine et le Val d'Oise). L'EHGO a depuis quelques années déjà grandement contribué à faciliter la vie du pêcheur. Il n'a désormais plus besoin de collectionner des cartes de pêche limitées à une zone réservée à une AAPPMA. Cette démarche de simplification, incarnée par l'EHGO mais aussi par les clubs réciprocitaires du Sud et du Nord-Est, a permis d'aboutir à la carte interfédérale, grâce à laquelle le pêcheur peut désormais pratiquer son loisir favori dans quasiment toute la France.

La Carte Interfédérale « Personne Majeure » EHGO est en vente pour 85 € et permet à tout pêcheur de pratiquer son loisir sur 73 départements, quelle que soit la fédération réciprocitaire HEGO. En effet, le Club Halieutique Interdépartemental (CHI) et l'EHGO ont passé une convention en 2001, signée dans les locaux même de la Fédération Nationale de la Pêche en France à Paris, permettant aux pratiquants, sans ajout d'un timbre supplémentaire, de pêcher dans la trentaine de départements adhérents que compte chacune de ces deux ententes. L'achat de la vignette EHGO est toujours possible au prix de 25 € pour les pêcheurs ayant acquis initialement la seule carte de leur AAPPMA et souhaitant par la suite, pêcher dans les départements réciprocitaires EHGO.

Les pêcheurs détenteurs de la carte interfédérale ou de la vignette EHGO pourront moyennant l'achat de la vignette de l'Union Réciprocitaire du Nord et de l'Est (URNE) à 25 € s'adonner à leurs plaisirs dans pratiquement tous les départements français. Le souhait d'une réciprocité nationale est unanimement exprimé par l'ensemble des pêcheurs.

Au niveau des sections non-domaniales du cours d'eau, le droit de pêche est lié au droit de propriété. Le propriétaire peut toutefois céder un droit de pêche à une tierce personne, la fédération de pêche, une AAPPMA ou une association privée.

b. Associations de pêche

Le territoire d'étude compte 7 AAPPMA pour un total de 1322 adhérents. Le nombre d'adhérents a fortement diminué ces 20 dernières années, avec la disparition de 3 AAPPMA. La pression de pêche est donc moins importante qu'il y a 20ans.

Les caractéristiques de ces associations sont présentées dans le tableau suivant :

Associations de pêche Nombre Catégorie Domaine Réciprocité Manifestations d'adhérents piscicole AAPPMA « La Gaulle de 218 2 concours de pêche privé Boissy le Chatel » 2^{ème} AAPPMA « Les trempeurs de 119 privé oui fils » à Coulommiers 2^{em} AAPPMA « La loche de 544 privé oui 2 concours de pêche Mouroux » AAPPMA « Les tires 69 Aubetin: 1 privé Aubetin: non Grand Grand bouchons de Pommeuse » Morin : 2^{ème} Morin: oui AAPPMA « Le Brochet de 46 2^è public 1 concours de pêche oui Dammartin sur Tigeaux » 2èi AAPPMA de Crécy la 240 public oui (sauf 1 concours de pêche Chapelle et ses environs étangs des et une école de pêche bruyères) 2^{ème} 86 AAPPMA « L'épinoche de privé et oui Couilly Pont aux Dames St public Germain sur Morin Montry »

Tableau 94 : Caractéristiques des AAPPMA sur la zone d'étude

L'AAPPMA de Crécy-la-Chapelle et ses environs met en place tous les ans deux concours de pêche. Elle organise également la journée nationale de la pêche début juin (fête de la pêche, ouverte à tous). Par ailleurs, elle propose un atelier Pêche Nature Découverte et des classes de vie (animations en classe et pêche en rivière) aux écoles avec la Fédération de Seine-et Marne pour la Pêche et la Protection du Milieu Aquatique.

En février, à l'occasion de la journée mondiale des zones humides, des visites sur la Frayère du Marais et des projections auprès du public et des écoles sont programmées par l'APPMA en partenariat avec la Maison de l'environnement, le Conseil général de Seine-et-Marne et la Fédération de Seine-et-Marne pour la Pêche et la Protection du Milieu Aquatique.

VIII.5.3.3. Golf

La zone d'étude comporte deux golfs :

- le golf de Meaux-Boutigny, golf international de 18 trous avec un parcours d'initiation de 9 trous, sur un magnifique terrain vallonné de 65 hectares ;
- le Crécy Golf Club, à la périphérie de Crécy-la-Chapelle, comportant deux parcours 18 trous pour les joueurs débutants comme les plus confirmés.

Golf de Boutigny

Golf de Brie

VIII.5.3.4. Perspectives

A l'échelle de Seine-et-Marne, un nouveau Schéma Départemental du Tourisme 2008-2013 a été adopté. Ce projet veut instaurer une Seine-et-Marne innovante, performante, porté par tous, avec une cohésion renforcée entre Disney et le territoire, et en développant un tourisme respectueux de l'environnement.

Au niveau de notre zone d'étude, on peut citer un projet important lié à l'eau. Ainsi, le club de CK de Saint-Germain-sur-Morin prévoit la création d'un bassin de slalom sur le Grand Morin au niveau du moulin de la Misère. La mise en place de ce site imposerait un nettoyage des berges, une restauration du déversoir, la mise en place d'une vanne toit pour contrôler le niveau d'eau lors des crues, l'aménagement d'un bras de contournement et enfin la modification du lit de la rivière afin de créer un courant homogène sur tout le parcours.

IX. CONCLUSION

Fonctionnement écologique

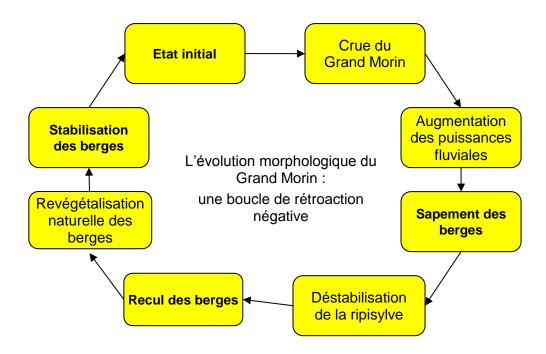
Les ouvrages transversaux génèrent des impacts non négligeables sur la dynamique des rivières et les êtres vivants s'y trouvant.

Une synthèse de l'état écologique a été réalisée sur les stations du Grand Morin conernées par ce diagnostic. En 2010, le seuil de « bon état biologique » est atteint sur 1 des 5 stations, la station amont de Saint-Rémy-la-Vanne. L'état écologique n'est pas atteint pour le reste des stations de suivi, essentiellement à cause de la qualité physico-chimique qui est détériorée par les fortes teneurs en nutriments (nitrates principalement) dues à la dominance agricole du bassin versant et la présence de moyennes agglomérations sur la zone d'étude.

D'après les indices, la qualité de la population piscicole sur la zone d'étude est bonne. Le recensement de chabots, loches franches et vandoises montre une bonne dynamique du cours d'eau au niveau de la station de Pommeuse. En effet, ces espèces dites « lotiques » ont besoin de courants dynamiques qui entretiennent des substrats grossiers pour leur cycle de vie. Cette station n'est cependant pas complètement représentative de la situation du Grand Morin et il convient probablement de compléter ces informations avec un cortège d'espèces d'eaux calmes.

Ce diagnostic met en évidence que la continuité piscicole sur le Grand Morin aval est très altérée avec de nombreux ouvrages infranchissables sur le linéaire. De plus, les habitats sont très homogènes et peu attractifs comme l'a montré le recensement d'un nombre restreint de frayères.

Le diagnostic écologique fait apparaître quatre principaux points :


- une dominance du faciès d'écoulement « profond lentique » qui engendre une faible diversité d'habitats ;
- une homogénéisation de granulométrie au fond du lit et une faible diversité de végétation aquatique, peu favorables au développement du peuplement piscicole et plus généralement à la faune aquatique;
- une végétation rivulaire présentant une base homogène de strate arborée, herbacée avec un ombrage permettant de garder une température favorable à la vie aquatique.

Le retour à un écoulement libre améliore la qualité physique globale du Grand Morin avec notamment une diversification des faciès découlement, une amélioration de la connectivité longitudinale. A terme, des milieux attractifs seraient recouverts. Néanmoins, une perte de cache et une dégradation de la connectivité latérale est à noter ponctuellement sur le linéaire.

Fonctionnement hydrogéomorphologique

Le Grand Morin est une rivière très modérée dans ses énergies et dans ses formes, en témoigne le faible nombre de tronçons véritablement dynamiques (2/29) et de tronçons à « fort » potentiel morphodynamique (8/29). Ce manque de dynamisme qui rend le cours d'eau peu mobile est à mettre en lien direct avec ses caractéristiques naturelles ainsi qu'avec le surcalibrage de la rivière et la succession des ouvrages hydrauliques.

Néanmoins, même sur les tronçons influencés par un ouvrage, des indices morphodynamiques relevés sur le terrain indiquent que cette rivière n'est pas figée à long terme. Ainsi quel que soit le degré de dynamisme ou le tronçon considéré, nous observons que les processus qui déterminent la mobilité du Grand Morin sont les mêmes (cf. figure cidessous).

Le diagnostic hydrogéomorphologique du Grand Morin permet d'évaluer son potentiel de mobilité. C'est de ce potentiel que dépendent les orientations à choisir en termes de travaux de restauration. Ainsi les secteurs à caractère dynamique ou les secteurs à « fort » potentiel morphodynamique nécessiteront des coûts de restauration moins élevés que les secteurs à faible potentiel morphodynamique et sont peut-être ceux qui pourront être prioritaires selon les actions à envisager.

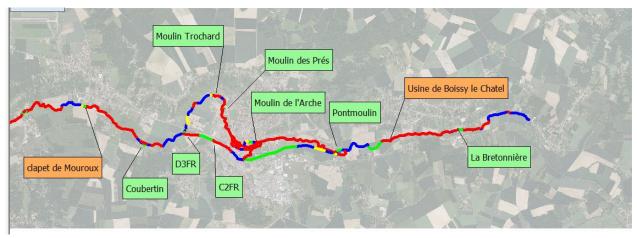
Usages

Depuis les années 1980 et la disparition des derniers usages économiques liés au moulin (papeterie, etc.), la totalité des ouvrages hydrauliques sur le Grand Morin aval n'a plus d'usages économiques. Néanmoins, la gestion des différents ouvrages est assurée par le syndicat du Grand Morin aval afin de lutter efficacement les inondations.

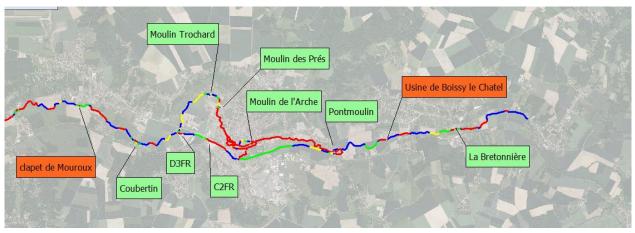
Aujourd'hui, ces moulins sont associés à différents usages : zones urbaines, pêche, valeur patrimoniale, etc.. Cette situation leur confère souvent une très forte valeur sociale et culturelle pour les riverains.

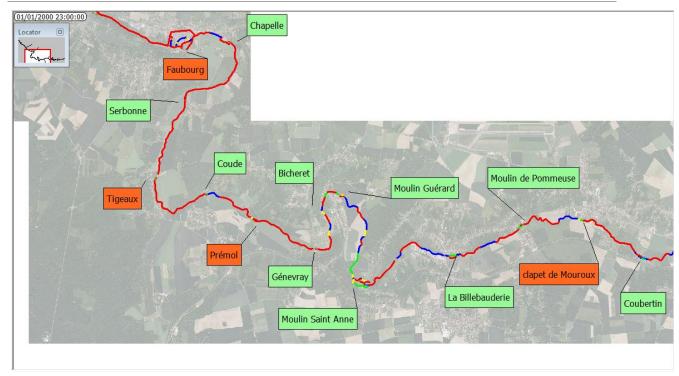

Pour conclure, il est indispensable dans le cadre de la **Phase 4**, aux vues des nombreuses interactions existantes sur chaque site, de déterminer les bénéfices et inconvénients de chaque ouvrage et conclure sur leur légitimité sur le plan hydraulique, écologique et social.

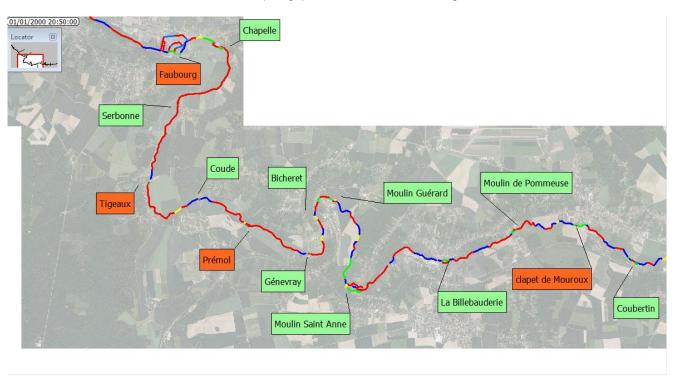
X. ANNEXES

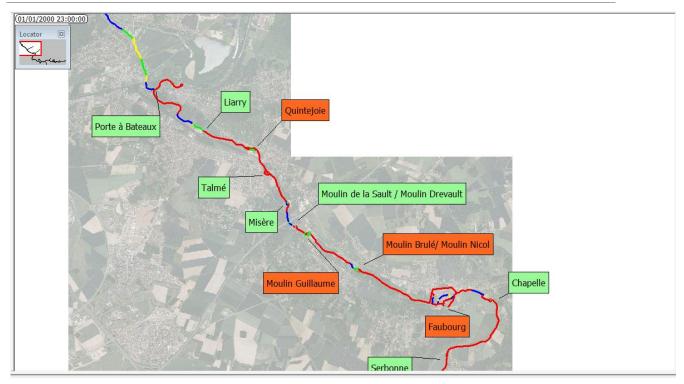

> Cartes de vitesse

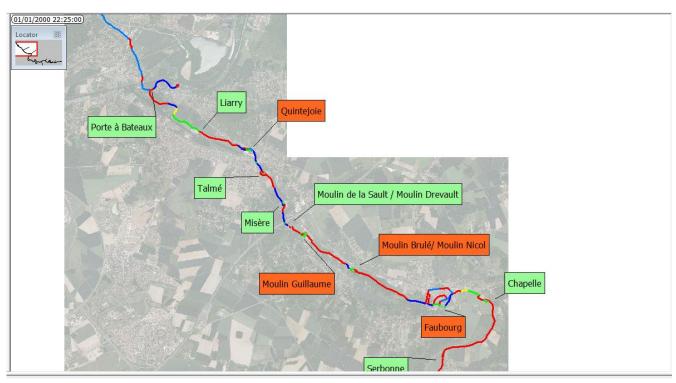
Dans les cartes de vitesse suivantes, les moulins en orange sont les moulins qui ont été ouverts.


Les gammes de vitesses sont les suivantes :

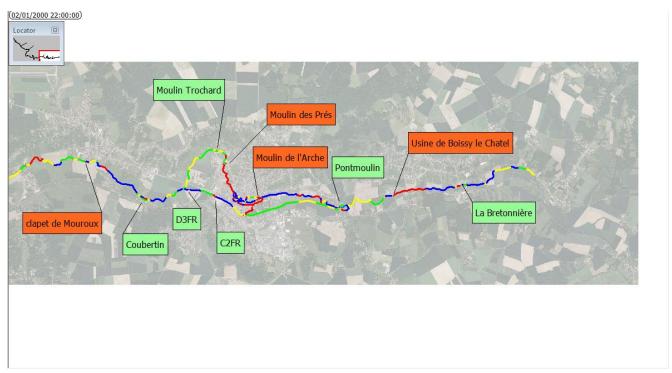

Cartes de vitesse en étiage :


Situation actuelle (étiage)

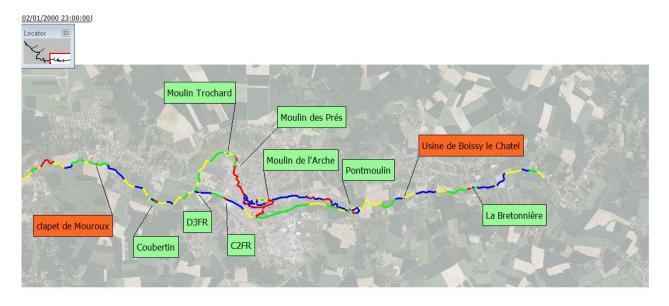

Tout ouvert (étiage)


Situation actuelle (étiage) de Coubertin à Faubourg

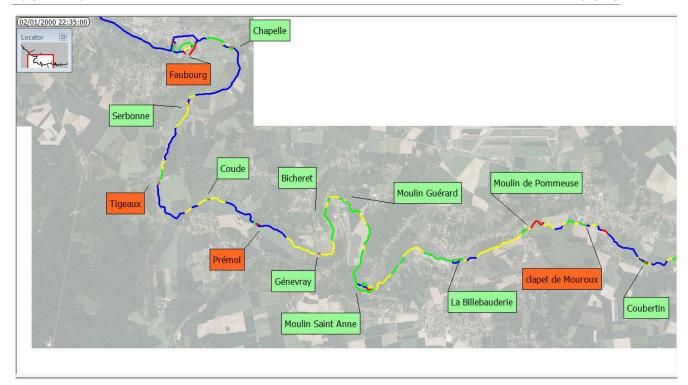
Tout ouvert (étiage) de Coubertin à Faubourg

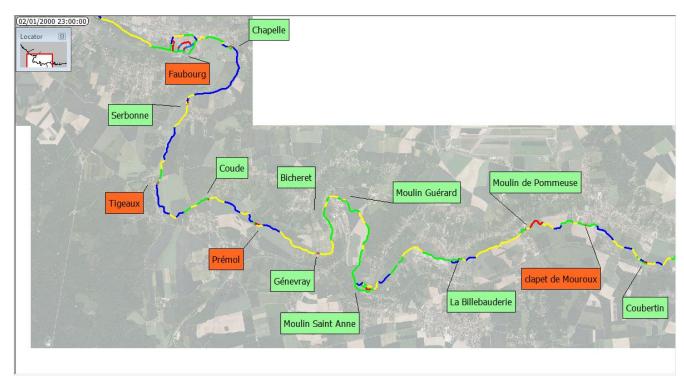


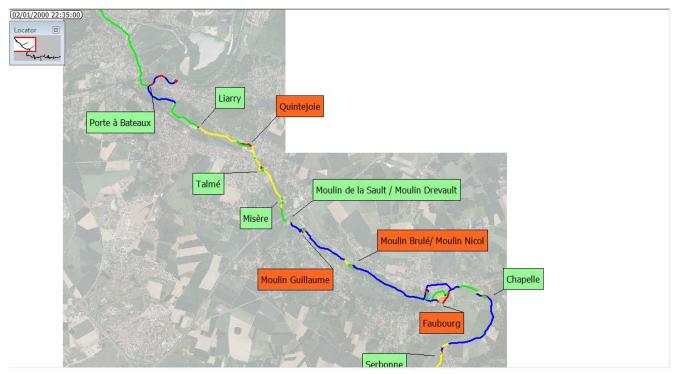
Situation actuelle (étiage) de Faubourg à la Marne

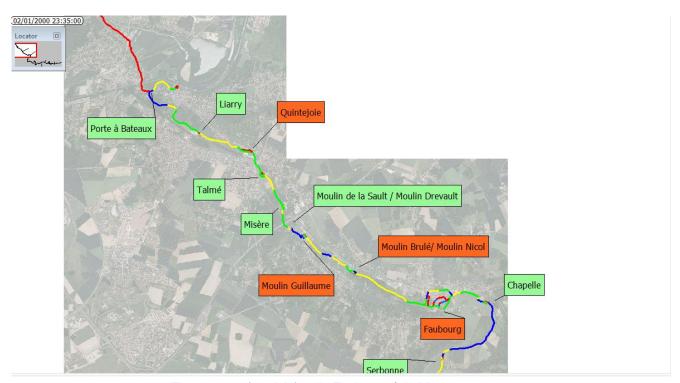


Tout ouvert (étiage) de Faubourg à la Marne

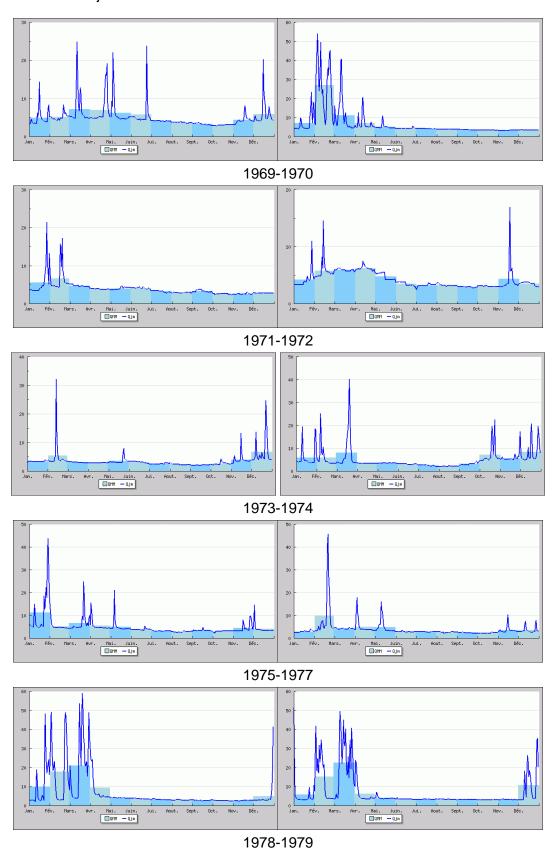

Cartes de vitesse au module


Situation actuelle (module)

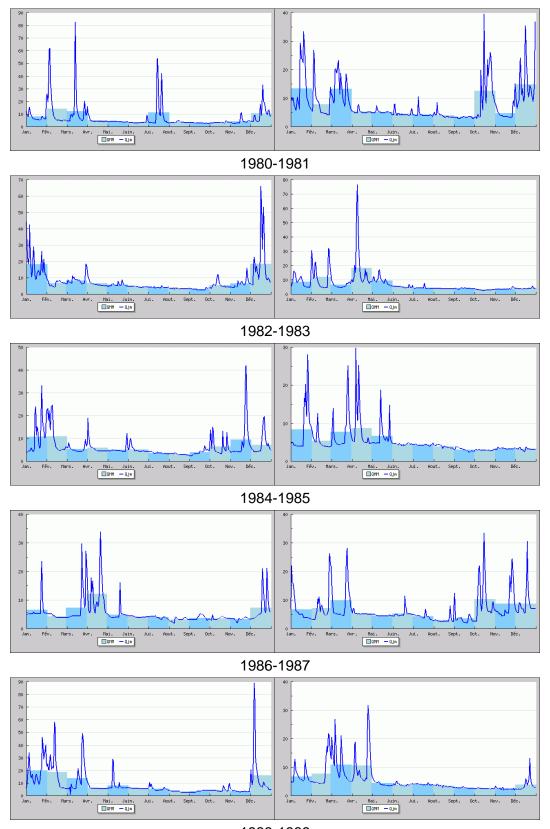

Tout ouvert (module)


Situation actuelle (module) de Coubertin à Faubourg

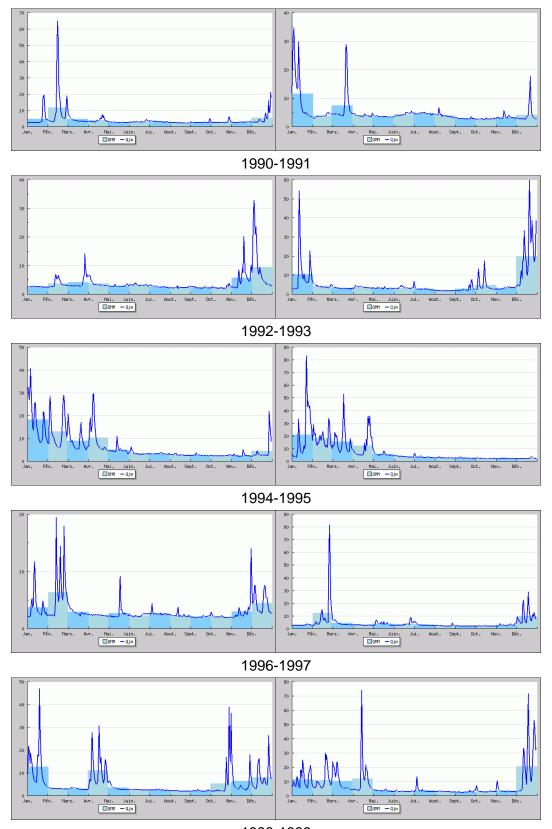
Tout ouvert (module) de Coubertin à Faubourg

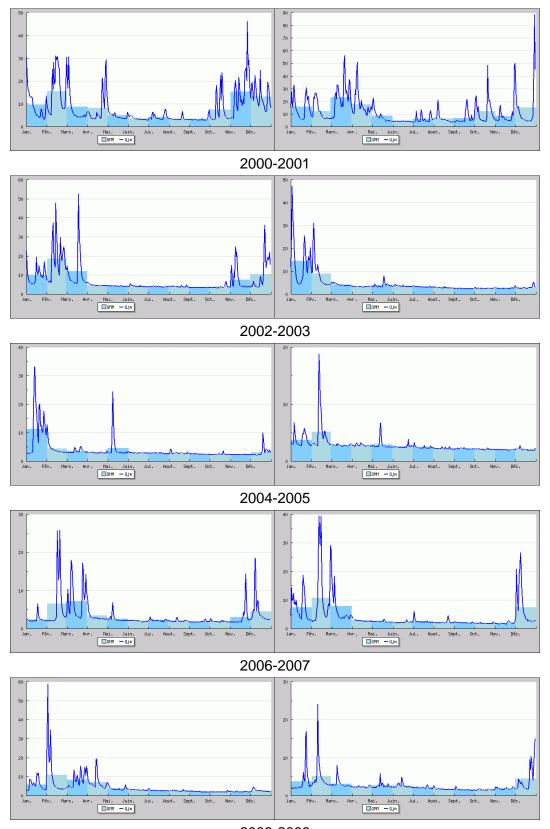


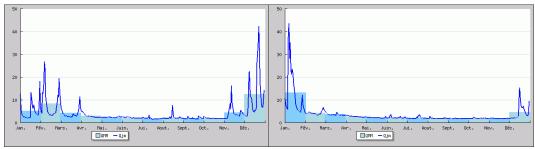
Situation actuelle (module) de Faubourg à la Marne



Tout ouvert (module) - de Faubourg à la Marne


Données hydrologiques (Banque Hydro : www.hydro.eaufrance.fr)
Débits journaliers en ³/s de 1969 à 2011 :




1988-1989

1998-1999

2010-2011

	Poids		Texture du sédiment						Texture des sables			Indices			Marge d'erreur
	humide	sec	bal	last	sal	oles	limons e	et argiles	grossiers	moyens	fins	grain moyen	skewness	Phi I	
Echantillons	q	q	g	%	q	%	g	%	%	%	%	V	-	-	%
ANN I.1	164,9	134,1	2,501	1,865	35,563	26,520	96,037	71,616	-	-	-	-	-		-
ANN I.2	154,3	126,9	0,127	0,100	38,920	30,670	87,853	69,230	8,89	35,69	55,42	0,23	-0,07	1,01	0,93
COU I.1	65,4	51,7	4,677	9,039	8,800	17,008	38,263	73,952	-	-	-	-	-		-
COU I.2	118,4	99,2	4,341	4,376	14,909	15,030	79,950	80,594	-	-	-	-	=	-	-
COU I.3	7	6,5	0,000	0,000	6,360	98,452	0,100	1,548	18,65	39,86	41,49	0,34	-0,34	1,04	0,14
COU I.4	129	106,2	0,686	0,646	12,670	11,930	92,844	87,424	10,61	12,21	77,17	0,17	-0,24	1,1	0,90
COU I.5	58,5	46,0	0,122	0,265	4,583	9,954	41,335	89,781	-	-	-	-	-	-	-
GUI I.1	66	52,1	0,027	0,051	14,056	26,979	38,017	72,969	-	-	-	-	-		
GUI I.2	206,6	163,8	0,000	0,000	28,710	17,527	135,090	82,473	2,54	19,51	77,95	0,16	-0,01	0,86	1,54
POM I.1	71	55,8	0,072	0,129	12,236	21,948	43,442	77,923	-	-	-	-	-	-	-
POM I.2	122	98,1	0,096	0,098	14,346	14,624	83,658	85,278	-	-	-	-	-	-	-
POM I.3	123,9	87,5	0,237	0,271	18,890	21,589	68,373	78,141	9,59	35,6	54,8	0,23	-0,05	1,07	2,03
POM I.4	75,6	59,7	0,189	0,317	7,286	12,213	52,185	87,471	-	-	-	-	-	-	-
POND I.1	43	34,9	0,055	0,158	7,832	22,435	27,023	77,408	-	-	-	-	-	-	-
POND I.2	138,1	114,7	0,332	0,290	17,542	15,294	96,826	84,417	-	-	-	-	-	-	-
POND I.3	109,5	95,8	0,099	0,103	10,374	10,829	85,327	89,068	-	-	-	-	-	-	-
POND I.4	167,4	132,3	0,410	0,310	28,720	21,708	103,170	77,982	5,98	18,54	75,49	0,16	-0,25	0,94	1,99
POND I.5	66	47,3	6,067	12,827	18,681	39,495	22,552	47,678	-	-	-	-	-	-	-
PONG I.1	177,7	96,3	0,045	0,046	11,198	11,629	85,057	88,325	-	-	-	-	-	-	-
PONG I.2	167,3	136,8	0,129	0,094	10,340	7,558	126,331	92,347	2,59	9,49	87,91	0,12	-0,21	0,77	1,20
PONG I.3	83,2	60,9	0,015	0,025	7,590	12,460	53,310	87,515	-	-	-	-	-	-	-
PRE I.1	61,4	49,12	0,116	0,235	8,300	16,898	40,704	82,867	-	-	-	-	-	-	-
PRE I.2	173,4	141,5	0,856	0,605	16,220	11,463	124,424	87,932	7,72	11,94	80,34	0,15	-0,35	1,05	1,00
PRE I.3	123,4	93,6	0,757	0,809	13,210	14,114	79,633	85,078	-	-	-	-	-	-	-
PRE I.4	28,7	18,28	0,344	1,883	3,351	18,329	14,585	79,788	-	-	-	-	-	-	
TALD I.1	57,4	47,209	0,133	0,282	5,036	10,668	42,040	89,051	-	-	-	-	-		
TALD I.2	97,3	79,9695	0,177	0,221	9,264	11,584	70,529	88,195	-	-	-	-	-	-	
TALD I.3	77	62,5897	0,029	0,046	7,324	11,702	55,237	88,252	-	-	-	-	-		-
TALD I.4	110,7	82,3	0,344	0,418	10,420	12,661	71,536	86,921	6,62	11,33	82,06	0,14	-0,44	0,98	2,03
TALG I.1	52,9	43,422		0,000	9,280	21,371	34,142	78,629	-		-	-	-		
TALG I.2	165,1	135,4	0,174	0,129	20,020	14,786	115,206	85,086	3,85	11,41	84,74	0,13	-0,14	0,78	0,70
TALG I.3	91,9	71,6806	0,061	0,085	10,737	14,978	60,883	84,937	-	-	-	-	-		
TALG I.4	53,6	36,82	0,018	0,049	8,713	23,664	28,089	76,287	-	-	-	-	-	-	-
TALG I.6	112,4	80,4	0,025	0,031	23,343	29,033	57,032	70,935	-	-	-	-	-	-	-
TALG I.7	26,7	11,5857	0,035	0,301	1,795	15,493	9,756	84,206	-	-	-	-	-		-
TRE I.1	132,9	109,8	0,224	0,204	8,560	7,796	101,016		4,04	6,37	89,59	0,11	-0,34	0,79	2,89
TRE I.2	105,3	87,3	0,290	0,332	6,042	6,921	80,968	92,747	-	-	-	-	-		-
TRE I.3	77	62,58	0,009	0,015	6,020	9,620	56,551	90,366	-	-	-	-	-	ı	-
TRE I.4	26,2	20,7	0,000	0,000	2,896	13,989	17,804	86,011	-	-	-	-	-	,	-
TRO I.1	96,1	77,9	0,565	0,725	13,161	16,894	64,174	82,380	-	-	-	-	-	1	-
TRO I.2	118,1	98,2	0,184	0,187	13,877	14,131	84,139	85,682	-	-	-	-	-	-	-
TRO I.3	144,7	124,8	0,081	0,065	9,770	7,829	114,949	92,107	4,69	7,77	87,54	0,12	-0,41	0,82	0,00
TRO I.4	50,8	38,3	0,723	1,888	6,668	17,410	30,909	80,702	-	-	-	-	-	-	-

> Annexe 4 : Matériel et méthodes

IBGN

Le calcul de cet indice a été effectué selon un protocole qui s'inscrit dans la circulaire CE 2007/22 du 11 avril 2007 qui a pour objet de proposer un nouveau protocole de prélèvement et de traitement des échantillons pour le réseau de contrôle de surveillance, dans le cadre de la mise en œuvre de la DCE. En effet, le mode opératoire suit les normes AFNOR XP T 90-333 de septembre 2009 et XP T 90-388 de juin 2010 concernant respectivement le prélèvement des macroinvertébrés aquatiques en rivières peu profondes et le traitement au laboratoire des échantillons. A noter l'utilisation du protocole expérimental d'échantillonnage des macroinvertébrés en cours d'eau profond de décembre 2009 pour les stations de Pommeuse (Grand Morin) et Tigeaux.

Pour obtenir un échantillon représentatif de la mosaïque des habitats dominants d'un site donné, et échantillonner les habitats marginaux qui permettront en outre de calculer une note IBGN, le protocole préconise d'échantillonner 12 prélèvements en combinant :

- un échantillonnage des habitats dominants basé sur 8 prélèvements unitaires ;
- un échantillonnage des habitats marginaux, basé sur 4 prélèvements.

Les 12 prélèvements sont réalisés en 3 groupes de 4 relevés (ou 3 bocaux). La vitesse de courant est également un facteur important de diversification des peuplements d'invertébrés benthiques et a été intégrée dans l'échantillonnage.

Le comptage et la détermination, à un niveau systématique particulier, des taxons récoltés en une station donnée permettent de déterminer la variété taxonomique de l'échantillon et de définir un groupe faunistique indicateur. Ces éléments permettent alors d'exprimer la valeur de « l'équivalent IBGN » (calculée à partir de 8 prélèvements sur habitats dominants) dont la note comprise entre 0 et 20/20 correspond à l'analyse de la combinaison constatée entre la variété et la polluosensibilité de la macrofaune benthique. Une **note indicielle**, qui s'intègre à la DCE, est aussi calculée à partir des 12 prélèvements sur le même principe de calcul que « l'équivalent IBGN ».

L'interprétation du résultat obtenu tient compte également de la diversité et de l'abondance des habitats aquatiques prospectés lors de l'échantillonnage. Ainsi, pour compléter les analyses faites à partir des données IBG, d'autres indices sont utilisés. Ils sont décrits cidessous :

- Le Coefficient d'aptitude biogène (Cb2) se décompose en deux notes (Cb2 = lv + ln). La principale différence de ce calcul par rapport à l'IBGN est que l'on considère ici un nombre plus important de taxons indicateurs. Ces deux indices différents (ln et lv) permettent d'illustrer de manière plus évidente la part respective de la qualité de l'habitat (en relation avec lv) et de la qualité physico-chimique de l'eau (en relation avec ln) dans l'indice global Cb2.
- L'indice de diversité de Shannon-Weaver traduit la diversité du peuplement. L'indice de Shannon-Weaver est sensible aux abondances relatives des taxons moyennement représentés (Beisel et *al.*, 1988).
- L'indice d'équitabilité et l'indice de dominance nous renseignent sur le degré d'équilibre du peuplement.

IPR

L'indice biologique IPR utilisé a été normalisé dans le cadre de l'AFNOR, norme NF T90-344.

La méthode utilisée pour l'échantillonnage des peuplements de poissons est la pêche électrique. Dans le but de décrire la structure du peuplement piscicole, cette méthode est adaptée compte tenu de son rapport coût/efficacité et de son caractère non-destructif.

Les informations suivantes sont recueillies à l'issue de chaque pêche :

- la liste des espèces capturées (donc la richesse spécifique) ;
- l'effectif total capturé par espèce ;
- la taille de chaque individu pêché ;
- la biomasse de chaque espèce ;
- les éléments d'évaluation de l'effort de pêche : surface prospectée, temps de pêche, nombre de passages, nombre d'électrodes, etc..

L'indice est de forme multiparamètrique (Oberdorff et al., 2002). L'écart entre le peuplement de référence, prédit par un modèle statistique, et le peuplement de la station étudiée est mesuré par sept métriques descriptives des peuplements piscicoles. Parmi ces dernières, cinq métriques prennent en compte la présence et/ou l'abondance des espèces appartenant à certains types écologiques (régime alimentaire, préférence habitat, polluo-sensibilité). Les deux autres métriques, richesse spécifique et abondance totale, comparent le peuplement dans sa globalité.

La comparaison entre le peuplement échantillonné et le peuplement de référence s'effectue en comparant les valeurs théoriques et observées pour chacune des 7 métriques.

Caractérisation de la Catégories Métriques perturbation suivante 1- Nombre d'espèces Altération de l'habitat lotique et rhéophiles (NER) Guildes des zones de reproduction d'habitat 2- Nombre d'espèces (annexes hydrauliques) lithophiles (NEL) Guildes de 3- Densité d'individus Altération de la qualité globale de sensibilité aux Caractéristiques tolérants (DIT) l'habitat et de l'eau bio/écologiques pollutions des espèces Altération des ressources 4- Densité d'individus alimentaires disponibles et plus invertivores (DII) particulièrement du peuplement Guildes de macroinvertébrés benthiques trophiques 5- Densité d'individus Enrichissement organique du omnivores (DIO) milieu Richesse 6- Nombre total d'espèces Altération de la biodiversité du Biodiversité et spécifique (NTE) milieu

Métriques « fonctionnelles » d'évaluation utilisées par l'Indice Poisson Rivière (IPR)

Le score de l'indice correspond à la somme des écarts calculés entre les 7 métriques. Ce score varie ainsi de « 0 » pour les stations proches de l'état de référence, à « l'infini » pour les stations dont le peuplement échantillonné ne correspond en rien à celui prédit par le modèle. Dans la pratique l'IPR dépasse rarement une valeur de 150 dans les situations les plus altérées.

7- Densité totale du

peuplement (DTI)

productivité du

cours d'eau

Abondance

Altération de la productivité du

peuplement